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License and Citation

License

EllipseFit 3 software and accompanying documentation are Copyright © Frederick W. Vollmer. They 
come with no warrantees or guarantees of any kind. The software is free and may be downloaded and 
used without cost, however the author retains all rights to the source, binary code and accompanying 
files. It may not be redistributed or posted online. It is requested that acknowledgment and citation be 
given for any usage that leads to publication.

This software and any related documentation are provided "as is" without warranty of any kind, either 
express or implied, including, without limitation, the implied warranties or merchantability, fitness for 
a particular purpose, or non-infringement. The entire risk arising out of use or performance of the 
software remains with you. 

Citation

EllipseFit is the result of many hours of work over several decades. Algorithms used in the program 
come from numerous sources, however many have been developed by the author, some of which have 
not yet been published and are the subject of papers in preparations. I have released the program 
publicly with the hope that the structure and tectonics community will find it useful, and ask 
forgiveness for the limited documentation, as well as respect for publication priority.

In return for free use, I request that any significant use of the software in analyzing data or preparing 
diagrams be cited in publications, presentations, or other works. Appropriate references for the software
and user manual are: 

Vollmer, F.W., 2015. EllipseFit 3.2.1 Strain Analysis Software. http://www.frederickvollmer.com/ellipsefit/.
Vollmer, F.W., 2015. EllipseFit 3.2.1 Strain Analysis Software User Manual. 

http://www.frederickvollmer.com/ellipsefit/.

References for specific techniques are (see References for citations):

Vollmer (2010) discusses ellipse and ellipse fitting techniques, including Shan's method, and their 
implementation in EllipseFit.

Vollmer (2011a) discusses methods for contouring finite strain on the unit hyperboloid and the use of 
hyperboloidal stereographic, equal-area and other projections for strain analysis.

Vollmer ( 2011b) discusses best-fit strain from multiple angles of shear and an analytical solution to the Wellman
diagram.

An acknowledgment, such as “I thank Frederick W. Vollmer for the use of his EllipseFit 3 software.” is 
appreciated.

Registration

Please consider registering the software, registration is free and helps me determine the software usage 
and justify the time spent in it's upkeep. To register, simply send an email to me at 
vollmerf@gmail.com with your user name, affiliation, and usage. I will send you one email in reply 
with my thanks, and will not place you on a mailing list. For example, send me an email with 
something like:

http://www.frederickvollmer.com/ellipsefit/
mailto:vollmerf@gmail.com


User: Frederick Vollmer
Affiliation: SUNY New Paltz, Geology Department
Usage: Undergraduate structural geology course and research

I am happy to take emails with questions and suggestions, either at the university (SUNY New Paltz) or
at the gmail address used on my website. However I am not reliable about checking email, so please 
forgive me if I am slow in answering, I will try to respond in as timely a fashion as possible. 
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1. Introduction
EllipseFit is an integrated program for geological finite strain analysis. It is used for determining two 
and three-dimensional strain from oriented photographs, and is designed for field and laboratory based 
structural geology studies. The graphical interface and multi-platform deployment also make it ideal for
introductory or advanced structural geology laboratories. I use the software to teach structural geology 
at SUNY New Paltz, where hundreds of students have used it in laboratory and field studies. EllipseFit 
is currently implemented for Windows, Macintosh, and Linux platforms. 

EllipseFit is suitable for determining two and three dimensional strain using various objects including 
center points (Fry analysis), lines, ellipses, and polygons. Polygons include ooids, pebbles, fossils, or 
particles of any initial shape. The analysis of strain from polygons is widely applicable to many rocks 
in thin section, hand sample, or suitable outcrops. EllipseFit allows digitizing polygons directly, or 
indirectly by using a flood fill method. EllipseFit converts them to moment equivalent ellipses, and the 
mean ellipse is equivalent to the strain (Mulchrone and Choudhury, 2004). Given three or more 
oriented sections EllipseFit can calculate the three dimensional strain using the method of Shan (2008). 

This User Manual was initially prepared for the strain workshop at the 2014 Structural Geology and 
Tectonics Forum, at the Colorado School of Mines with Paul Karabinos and Matty Mookerjee, and is 
not, however, complete. EllipseFit 3 has numerous improvements over version 2, but has had more 
limited testing. Additional releases are planned in the near future. Version 2 is stable and has been 
widely used, including for a strain workshop at the 2012 Structural Geology and Tectonics Forum at 
Williams College. No updates are planned for EllipseFit 2. 

I am a professor of structural geology, and have taught for over 30 years at SUNY New Paltz. I had the 
luck to be introduced to analytical structural geology as a student, and am particularly grateful to my 
mentors Rob Twiss at UC Davis, Win Means at SUNY Albany, and Peter Hudleston at U Minnesota 
whose clear thinking inspired me. I was introduced to programming as a grade school student, when 
my dear mother forced me to take a summer school course. I subsequently joined the Computer Club, 
as the third member, and spent countless hours on the terminal connected remotely to a mainframe. 
Writing code is still an obsession.

The final version of EllipseFit 1 was completed in the 1989 in C++ for Macintosh, in part based on 
code from a Fortran program written (on punch cards) for Win Means. Version 2 was written in cross 
platform RealBasic, however issues with licensing, cost, performance, and the closed source led me to 
abandon that language. Version 3 is fully rewritten, with tens of thousands of lines of code, in Free 
Pascal, a professional open source compiler that runs on over 40 operating systems. This allows 
improved code with better speed and extensibility, and the potential to port to other platforms. I 
simultaneously develop several programs that use common graphics and matrix libraries that I have 
written. 

1.1 Installation

On Macintosh OS X, double click the disk image file (.dmg), and drag the EllipseFit application to 
your Applications folder, or other desired location. 

On Windows, unzip the zip file (.zip) using the Extract All option, and drag the EllipseFit folder to any 
desired location. The EllipseFit folder contains the EllipseFit application (EllipseFit.exe), and a 
“Resources” folder which is required. Please make sure to entirely extract the EllipseFit folder from the
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zip file, this is the most common installation problem. 

On Linux unpack the gzip file (.tar.gz), and copy the EllipseFit folder to any desired location. The 
EllipseFit folder contains the EllipseFit application (ellipsefit), and a “Resources” folder which is 
required. An application icon (ellipsefit.png) is included in the Resources folder if desired for 
installation.  

There is also a folder of example data and images to show how data is formatted, these are referred to 
in this guide. After installing a new version it is recommended that you reset the preferences using the 
“Reset Preferences” command in the Help menu. This will clear any options that may have changed 
and set them to default values. The preferences are stored in the file EllipseFit3.xml, which is located in
the folder EllipseFit in your operating system's application preferences folder. To deinstall simply 
delete the EllipseFit application folder, and optionally delete the preference folder. No other files are 
installed on your computer. No administrative permissions are required to install EllipseFit, and it is 
possible to keep a copy on a thumb drive to run on any computer. 

1.2 Example Data Files 

The included example files and images can be used to determine input data formats. These are simple 
files that can be generated using a text editor or spreadsheet. EllipseFit 3 will read comma separated 
(csv), tab separated (tsv), and Open Document (ods) formats. The header line indicates the type of data 
required in each column. The included example files are named to indicate their contents (this is not 
required, EllipseFit will examine the headers to determine the available data, and extra columns are 
ignored): 

E2 - Ramsay and Huber 1983 (small).csv
E2 - Ramsay and Huber 1983 (small).jpg
E2 - Ramsay and Huber 1983 (large).jpg
Example ellipse data and thin section photomicrograph (from Ramsay and Huber, 1983). This data type
can contain (X, Y) coordinates for Fry-type analyses, or complete ellipse data including (X, Y, A, B, R, 
Phi) axes data. Note that there are small and large versions, I use the large version, which does not 
include a data file, for teaching. 

E3 - Hossack 1968.csv
Example ellipsoid data (from Hossack, 1968) with (A, B, C) axes data for Flinn and Nadai plots.

ES - Owens 1984.csv
Example ellipse section data (fron Owens, 1984 ) for calculating the three-dimensional strain ellipsoid 
from three or more faces using Shan's (2008) method. The strikes and dips of each section must be 
included. 

LA - Ragan 1985 F10.1a.csv
LA - Ragan 1985 F10.1a.png
Example line angular shear data and image (from Ragan, 1985) for analytical Wellman-type analysis 
(Vollmer, 2011). Each data point requires the endpoints of two lines that originally had a constant 
angle. This is an analytical solution to the classic multiple brachiopod problem illustrated in a number 
of structural geology texts.

LS - Ragan 2009 T14.9.csv
Example line stretch data for lines with known initial and final lengths, such as boudins and folds. 
EllipseFit does not yet provide digitizing of this type of data. Please contact me if this would be of 
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interest. Note that the LS data is from fold flattening index example (Ragan, 2009), which is 
mathematically related.

MLLF Test 60.csv
Sample of 60 points used to test the maximum mean log likelihood function (MLLF) method of Shan 
and Xiao (2011). 
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2. Overview of Strain Analysis
When attempting to unravel the history of a mountain belt, one starts with an outcrop or a hand sample.
The lithology, textures, and mineralogy give clues to the past sedimentary environment, the 
temperature and pressure history, and geochronology gives the dimension of time. Strain analysis gives 
another dimension, a measure of the deformation enjoyed during that history. 

Geological strain analysis and theory is an important aspect of structural geology that is covered in 
numerous textbooks (e.g., Means, 1976; Hobbs, Means, and Williams, 1976; Ragan, 1985; Marshak 
and Mitra, 1988; Van der Pluijm and Marshak, 2004; Pollard and Fletcher, 2005; Twiss and Moores, 
2007; Ragan, 2009; Fossen, 2010). Ragan (2009) and Ramsay and Huber (1983) provide excellent 
overviews of techniques for the analysis of strain in deformed rocks. 

Strain markers can be grouped into three general categories (Lisle, 2010; Mulchrone, 2013): 

    1) Objects or groups of objects with known pre-strain geometries
    2) Objects whose shape may be approximated by ellipses or polygons
    3) Collections of objects whose spacial arrangement can be used to determine strain

Category 1 includes fossils and other objects of known unstrained geometry to which equations of 
finite strain can be applied (e.g., Ramsay, 1967; Ramsay and Huber, 1983). These techniques are useful
for specific locations or samples (e.g., Wellman, 1966; Waldon, 1988), but are less broadly applicable 
than the other two. EllipseFit implements an analytical Wellman method (Vollmer, 2011), and a method
where multiple line stretches (as from folds and boudins) are known (Chapter 4). Category 2 includes 
samples such as sandstones and conglomerates, as well as collections of irregular clasts or fossils 
(Mulchrone and Choudhury, 2004), so these techniques are very broadly applicable. EllipseFit includes 
numerous procedures to collect and analyze this type of data (Chapters 5). Category 3 includes Fry 
(Fry, 1979) and nearest neighbor (Ramsay, 1967) methods, EllipseFit includes numerous procedures 
related to these (Chapter 3).

The following chapters discuss techniques of strain analysis that are implemented in EllipseFit in terms
of the type of data collected: points, lines, ellipses, and polygons. Points are the simplest type of data 
collected, however, as discussed in Chapter 3, Strain from Points, it can be difficult to objectively 
extract strain from point distributions. The analysis of line data depends on the known initial lengths of,
or angles between, lines, and has important applications for some data as discussed in Chapter 4, Strain
from Lines. 

Chapter 5, Strain from Ellipses and Polygons, covers ellipse data, which is collected assuming that 
particles, such as sand grains, initially approximated a collection of random spheres or ellipsoids. It 
turns out, however, that ellipse data is a subcategory of polygon data. An important mathematical proof 
(Mulchrone and Choudhury, 2004) shows that all particles, of any shape, that can be assumed to have 
been initially randomly oriented, can be used to calculate strain. This allows numerous geological 
objects to be used for strain analysis using objective calculations developed for ellipse analysis.

Chapter 6, Ellipse Data Plots covers graphical techniques for two-dimensional strain plots, including R f

ϕ plots and polar Elliott plots, which are types of hyperboloidal projections. Hyperboloidal projections 
are analogous to spherical projections, such as the stereographic and equal-area projections that are 
used to create stereonets and Schmidt nets respectively, familiar to students of structural geology.

Chapter 7, Mean Ellipse Calculation, discusses the calculation of a mean ellipse from a sample of 
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ellipses. As discussed in Chapter 5, these calculations apply to polygons as well as ellipses, as the use 
of polygon moment equivalent it ellipses removes the requirement that particles were initially elliptical.

The techniques mentioned thus far are related to two-dimensional strain analysis. Chapter 8, Ellipsoid 
Calculation, covers the more complex steps involved in determining three-dimensional strain ellipsoids
from oriented sections for which the two-dimensional strain ellipse has been determined. Chapter 9, 
Ellipsoid Plots, covers strain plots used to display this type of data, Flinn and Nadia plots.

Chapter 10, Data Transformation discuses methods for transforming data sets, including unstraining or
retrodeforming data sets and images to their pre-deformation state. Chapter 11, Data Synthesis, covers 
data synthesis for making artificial samples from random populations. Chapter 12, Image Analysis 
discusses image analysis techniques, including filtering and edge finding, that can aid in highlighting 
particle edges prior to digitizing.

 It is essential to be aware of the assumptions involved in strain analysis. Refer to the referenced texts 
for a complete discussion. An important consideration is whether the particles, such as fossils or clasts, 
record the same deformation as the rock. In general, this means whether there was a viscosity contrast 
between the particles and the matrix that encloses them. This is discussed briefly in Chapter 3. 

A second problem to consider is whether there was an initial preferred orientation of the particles, this 
can be related to an initial sedimentary fabric, or compaction. Unimodal, or orthogonal, sedimentary 
fabrics and compaction essentially apply a “deformation” that is indistinguishable from a tectonic 
deformation without additional information. Detection of initial fabrics is discussed briefly in Chapter 
7. Similarly, volume change is difficult to quantify, and strain is generally calculated with volume 
equivalent to an initial unit sphere.  

This User Manual is written in a tutorial fashion, in order to become acquainted with the program, it is 
a good idea to work through the examples provided. This User Manual is also not yet finished, it is a 
work in progress.
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3. Strain from Points
It is common in nature for objects to be distributed randomly, but with some minimum cutoff distance 
between them. A random distribution in space follows a Poisson distribution (see, for example, Davis, 
1986), essentially a distribution gotten by throwing pingpong balls randomly into an empty room. 
However, the centers of the pingpong balls can never touch, giving a cutoff distance of twice the radius 
of the balls. 

This distribution is called a truncated Poisson distribution (e.g., Shana and Xiao, 2011), or an 
anticlustered distibution (e.g., Mulchrone, 2013). Examples of this type of data include the centers of 
clasts in many sedimentary rocks such as sandstones and conglomerates. The centers of phenocrysts in 
igneous rocks, where nucleation of new crystals is prevented in proximity to existing crystals due to the
chemical gradient, is another example. Note that if the particles have a different viscosity than the 
enclosing matrix, even if they are perfectly rigid, it is possible to get an estimate of the strain of the 
rock. Thus it is possible to extract different information than by an analysis of the particle shapes.

The basic idea for methods utilizing point distributions (e.g., Ramsay and Huber, 1983) is that the 
distance between the initial object centers is the same in all directions, and after a deformation the 
particles are closer in some directions and further in others. This new distribution will be elliptical in 
two dimensions, or ellipsoidal in three-dimensions. 

Two general methods have been proposed for analyzing this type of data, a nearest neighbor approach 
(Ramsay, 1967; Ramsay and Huber, 1983), and an all object separation approach (Fry, 1979), 
commonly referred to as the Fry method. The latter, initially graphical approach, has many variations, 
one of the most common is the normalized Fry method (Erslev, 1988; Erslev and Ge, 1990). It is 
important to note that the normalized Fry method requires the particle shape (as an ellipse), and 
therefore the distinction between Category 2 and Category 3 data (Chapter 2) becomes blurred, or lost. 
If it can be assumed that the strain of the particles reflects the strain of the rock, then it is preferable to 
use the Category 2 methods as discussed in Chapter 5.

The nearest neighbor approach (Section 3.3) has been enabled computationally by the availability of 
Delaunay triangulation algorithms (e.g., Preparata and Shamos, 1985). This approach was initially used
in EllipseFit 1 (Vollmer, 1989), and has been developed extensively by Mulchrone (Mulchrone, 2003;  
Mulchrone, 2013).

A difficult problem in point data analysis is to determine the strain ellipse from the central void. The 
enhanced normalized Fry method (Erslev and Ge, 1990) was developed to solve this, but requires the 
particle ellipse, and also a subjective parameter, the selection factor (Section 3.2). As discussed above, 
this blurs the distinction between Category 2 and 3 data. A number of solutions to this problem using 
only point data (Category 3) exist (e.g., Lisle, 2010; Shan and Xiao, 2011; Waldron and Wallace, 2011; 
Mulchrone, 2013). Currently EllipseFit implements the algorithm of Shan and Xiao (2011), discussed 
in Section 3.4.

3.1 Fry Analysis

A Fry analysis (Fry, 1979) is an important and widely used technique for analyzing this type of data, 
and there is an extensive literature on it and its variations (e.g., Hanna and Fry, 1979; Crespi, 1986; 
Onasch, 1986; Erslev, 1988; Erslev and Ge, 1990; Dunne, Onasch, and Williams, 1990; McNaught, 
1994; McNaught, 2002; Shan and Xiao, 2011; Waldron and Wallace, 2011; Mulchrone, 2013).
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A Fry analysis can be simply done with two pieces of tracing paper, by tracing all of the particle centers
on one sheet, then drawing a center point on a second sheet overlain on the first, and then sequentially 
moving the center point to each point and trace each point. For n initial points, this generates: 

nf = n! / (2 * (n - 2)!)

points, which is a lot of points to draw by hand. To illustrate the use of the method in EllipseFit, start 
EllipseFit and open the image file (File > Open Image):

E2 - Ramsay and Huber 1983 (large).jpg

This is a photograph of a deformed ironstone oolith in thin section from Ramsay and Huber (1983) that 
is widely used as a test image for strain analysis. For point digitizing make sure the Center Point icon 
(Digitize > Center Point) and Add Tool (Digitize > Add Tool) icons are selected, as shown in Figures 1 
and 2. 

Use the Zoom In and Zoom Out tools to enlarge the image, and click on one particle center. The Data 
Window will display a highlighted line of data. Before continuing, open the Fry plot (Analyze > Fry 
Plot), as shown in Figure 2. 

Continue digitizing point centers, you should ideally work out from one point digitizing adjacent points
keeping a roughly circular area. The Fry plot will start to develop as you digitize, with each new set of 
generated points highlighted (Figure 3). 

Figure 1. EllipseFit's Image Window used for digitizing, with 
photomicrograph of a deformed oolite from Ramsay and Huber 
(1983). 



EllipseFit User Manual Page 8

Use the Hand Tool (Digitize > Hand Tool) to scroll, and the Zoom Tool to zoom (Digitize > Zoom). You 
can also use the Command (Mac) or Control (Windows and Linux) + and – keys to zoom in and out. 
Holding down the Shift key allows scrolling with the cursor. Points can be deleted by using the Find 
Tool (Digitize > Find Tool) to highlight a point, and delete it using the Cut command (Edit > Cut). A 
point can also be deleted by selecting it in the Data Window and deleting it there. It is important to be 
objective, and you may wish to digitize all available points, however note that some particles may not 
meet the required assumptions. In particular, note that the centers of the particles in two-dimensions do 
not generally correspond to their three-dimensional centers, as they lie on an arbitrary plane cutting 
through the rock, so the assumption of of a uniform cutoff distance is weakened. This is discussed 
further in Section 3.2, Normalized Fry Analysis. 

It is also desirable to select approximately equal numbers of particles in all directions, so the point 
density is not biased by direction. This is one reason to maintain a uniform point density in a circular 
area while digitizing, and why having the interactive Fry plot open can assist in particle selection. This 
is discussed further in Section 3.3. 

Figure 2. EllipseFit's Image Window, Data Window and Fry Graph displaying a single data 
point.
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If you wish to change the size of the digitized points, click the Preferences icon from which you can 
set most of the EllipseFit preferences. Note some selections have multiple pages, use the left and right 
arrow keys to go through them. You can preview the effect of preference changes before setting then 
with the OK button.

Figure 3. Fry plot after digitizing 20 adjacent particle centers. The generated points are 
highlighted. On the right, note the presence of the spurious data point (each point is mirrored 
about the center) generated by clicking too close to an existing point, i.e. an operator error which 
can be deleted.  
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To view the data as a Strain Map select Analyze > Strain Map. This displays the data as particle centers,
this population can be strained and unstrained as described in Chapter 10, Data Transformation. 

Figure 5 is the plot after carefully selecting 60 particle centers, a probable minimum number for 
analysis (Shan and Xiao 2011), and after digitizing 252 points, essentially all of them.

Figure 5. Fry plots after digitizing 60 carefully selected points, and after digitizing 252 points, 
essentially all of them. These images are PNG files as saved from EllipseFit.

Figure 4. The EllipseFit Preferences Dialog where most 
preferences are set. Note the left-right arrows used to scroll to 
additional pages if present. 
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To zoom in for a better image of the central void, open the Preferences Dialog, uncheck Auto-scale, 
and enter a number smaller than the displayed Data radius (Figure 6). 

Figure 7 shows the zoomed in central voids for the two examples. The next step is to determine the 
best-fit ellipse for the central void displayed in Figure 7. This can be a subjective process, and 
objectively choosing this ellipse is the subject of a number of papers (e.g,  Erslev, 1988; Erslev and Ge,
1990; Shan and Xiao, 2011; Waldron and Wallace, 2011; Mulchrone, K.F., 2013). 

Figure 6. Set the plot radius to display the central void by unchecking Auto-scale, and entering a 
smaller radius.

Figure 7. Close up of the central voids for the two data examples of 60 and 252 points.
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The normalized Fry method (Erslev, 1988; Erslev and Ge, 1990) is one that is commonly employed, 
but requires the digitized ellipses of each particle. The normalized Fry method is the subject of Section 
3.2. Ideally a method should require only the point data (e.g., Shan and Xiao, 2011; Waldron and 
Wallace, 2011; Mulchrone, K.F., 2013). Currently EllipseFit implements the algorithm of Shan and 
Xiao (2011), discussed in Section 2.3.

For the purposes of this section, it will be assumed that the void has been defined well enough to pick 
out the void by eye, which can be a good enough estimate, and also makes a good exercise for student 
laboratories.

Click on the Centered Ellipse icon (Digitize > Centered Ellipse), and click at the edge of the void. An 
orange circle marks the starting point, subsequent points are marked by a yellow circle. When finished, 
click on the orange circle and the ellipse will be calculated and displayed in the Log Window.  

For this sample, the calculated results are reported by EllipseFit as:

N = 60
Pairs = 1770
Best-Fit Ellipse  
  Manual
  n = 17
  R = 1.758
  Φ = 25.45°
  RMS = 0.0583 

A centered ellipse was calculated from the 17 digitized points. The calculation is rotationally invariant, 
and the best fit found by minimizing the sum of the squares of the distance of the points from the 
ellipse, i.e., the residuals. The minimization is solved from the linear equations using a LU 
decomposition. 

Figure 8. Digitizing the central void. The orange point is the start point, the yellow are subsequent
points. Click on the orange point when finished, and the ellipse is calculated. The point size is set 
larger than the default size for the illustration.
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The RMS value is the root mean square measure of the variation of the residuals from the ellipse, that 
is the square root of the sum of the squares of the residuals of the data from the fitted ellipse. RMS is a 
common way to express goodness of fit of least squares solutions. It is not a measure of the error in the 
strain calculation, and is not technically an error. It is, however, a measure of how closely the digitized 
points fit the ellipse. A small RMS means that the entered points lie close to an ellipse. It makes a good 
class exercise for students to solve and compare their results and RMS.

As a final step in this analysis, select the Edit > Transform Image command and enter the results into 
the dialog as in Figure 9. The image will be unstrained to remove the calculated strain as shown in 
Figure 10.

Figure 9. The Transform Image dialog with 
values entered to unstrain the mage.
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Figure 10. The oolith photomicrograph after being unstrained using EllipseFit's Image Transform 
command.



EllipseFit User Manual Page 15

Next select the Analyze > Transform Data command and enter your calculated values as shown in 
Figure 11. Press Transform and then Accept.

The data is unstrained using the calculated values, as shown by the Fry plot in Figure 12. The Rectify 
option resolves the offsets caused by the image transformation, so the data points remain centered over 
the particle centers. 

Figure 12. Fry plot of the unstrained 60 point 
data after using the Transform Data command to
unstrain (retrodeform) the data using the 
calculated values.

Figure 11. The Transform Data dialog with 
values entered to unstrain the data. Set Mean is 
only used with ellipse data. Rectify resolves the 
offsets caused by the image transformation.
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3.2 Normalized Fry Analysis

As discussed in Section 3.1, the Fry analysis is a two-dimensional solution to a three-dimensional 
problem, since initial particles are assumed circular instead of spherical. Even if the particles have a 
uniform size, a section through a sample will show them as different size particles. One solution 
developed to overcome this is the normalized Fry analysis (Erslev, 1988; Erslev and Ge, 1990 
McNaught, 1994; McNaught, 2002).

The distances between particles are normalized to account for the difference in the sizes of the 
particles, which can greatly improve the sharpness of the central void. Unfortunately, the ellipse sizes 
and orientations are required for this, and in most cases if the ellipse data is available, it should used for
the strain analysis following techniques in Chapter 7, Strain from Polygons. However, as mentioned in 
Section 3.1, a Fry analysis can provide different information regarding particle versus matrix strains. 

The digitizing of ellipses is discussed in Chapter 5, Strain from Ellipses, so for an example of this 
analysis, open the image file:

E2 - Ramsay and Huber 1983 (small).jpg

and the data file:

E2 - Ramsay and Huber 1983 (small) 

This is the 252 point data set used in Section 3.1. 

The data is overlain on the image, and, if the Find Tool icon is selected, you can select individual 
particles that are highlighted in the Data Window and the Fry Plot. This selection method is 
implemented for most of the plots discussed in subsequent chapters. The Fry plot will look like Figure 
5B.
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To zoom in on the central void, open the Preferences Dialog (Gear Icon), deselect Auto-scale, and 
enter 50 for the Graph radius as shown in Figure 14.  

Figure 13. EllipseFit Image Window with ellipse data overlain. Selecting the Binoculars Icon 
(as shown) allows interactive selection of particles that are highlighted in the Data Window, as 
well as on data plots including the Fry plot.  

Figure 14. Settings to display the central void 
without normalizing.
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The unnormalized plot is displayed in Figure 15.

To normalize the plot select Normalize, as shown in Figure 16. Note that the Normalized radius is now 
used due to the normalization to a unit circle, the default value is 1.5 as shown. 

The resulting normalized plot is shown in Figure 17. Note the clear sharpening of the central void.

Figure 16. Settings to display a normalized Fry 
plot. Note that the Normalized radius is now 
used due to the normalization to a unit circle. 

Figure 15. The Fry plot without normalizing, 
using the settings displayed in Figure 14.
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The final question addressed in his section is how to find the ellipse corresponding to the central void. 
The enhanced normalized Fry method (Erslev and Ge, 1990) uses a user specified cutoff radius to 
exclude particles beyond the a certain distance from the void center. This is a subjective value, chosen 
here with a default value of 1.05. In the Preferences Dialog check Normalize, and uncheck Show all 
points. EllipseFit calculates the best-fit ellipse through the cloud of points using the least squares 
method described in Section 3.1. 

Figure 18. Settings to display an ehanced 
normalize plot.

Figure 17. Plot of the normalized data. Note the 
better resolution of the central void.
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The results from the Log Window are:

N = 252
Pairs = 31626
Normalized
Enhanced
Selection factor = 1.050
Enhanced pairs   = 142
Best-Fit Ellipse
  Automatic
  n = 142
  R = 1.581
  Φ = 24.46°
  RMS = 0.1383 

Again, the RMS is a measure of the deviations of the residuals, and can be used to refine the selection 
factor. However, note that smaller number of points will generally have a smaller RMS. For example 
three points give RMS = 0, so finding the minimum RMS is not a valid strategy.

Figure 19. Fry plot with ellipse fitted to the 
enhanced normalized points.
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Section 3.3 Objective Fry Analysis

Calculating the strain from a sample of points should ideally be objective, not requiring a user to select 
the best-fit ellipse (as in Section 3.1), and should not require additional information about the particle's 
shapes (as in Section 3.2). An objective numerical calculation is therefore desirable, and a number of 
methods have been proposed (Mulchrone, 2003, 2013; Waldron and Wallace, 2007; Lisle, 2010;  Shan 
and Xiao, 2011; Reddy and Srivastava, 2012; Kumar et al., 2014).  

Kumar et al., 2014, tested six such methods using two-dimensional simulated data sets, and concluded 
that the continuous function method (Waldron and Wallace, 2007), and Delaunay triangulation method 
(Mulchrone, 2003, 2013) give the most accurate strain estimates. The maximum likelihood method 
(Shan and Xiao, 2011), gave less accurate results, possibly because the non-random point distribution 
in the simulated samples violates the method’s requirement of a homogeneous truncated Poisson 
distribution. 

Section 3.3.1 Mean Log Likelihood Function

EllipseFit implements the mean log likelihood function (MLLF) method of Shan and Xiao (2011). They
examine the statistics of a truncated Poisson distribution, and define the MLLF as the average sum of 
the log probability distribution function (PDF) of each individual point in the deformed state. This is 
related to the density distribution around each point.

The PDF in the deformed state is related to the pre-deformation PDF by the shape and orientation of 
the central void, giving as parameters a cutoff distance, the ratio R, and the orientation Φ. The function 
is complex however, and is solved using a gird search to locate the maximum MLLF. The search is 
over the range Φ = 0° to 179° in steps of 1°, and R = 1 to 20 in steps of 0.1. The latter value is the 
default that can be changed if desired, a smaller value will speed up the search. Once R and Φ are 
determined, the sample is retro-deformed, and a 50 step search is done to locate the cutoff radius.

Shan and Xiao (2011) further suggest an approach to improve the results using a cross validation 
technique for detecting spurious points by sequentially removing up to 10 points, the default value in 
EllipseFit, and repeating the search. These algorithms were implemented by Y. Shan in a Fortran 
program which he provided, EllipseFit has been carefully tested to insure that identical results are 
obtained.

The result are the best estimates values of R,  Φ. initial cutoff distance, and a set of neighborhood 
points. This method has advantages in that it is a robust numerical solution, and one that uses all of the 
points to define the central void. In comparison, the enhanced normalized Fry method that only 
examines the points close to the void. 

A disadvantage of the method is the computing time required to calculate the solution. In particular the 
cross-validation can take several hours. Shan and Xiao (2011) also note, that it is a pity that the 
treatment does not require the Fry plot, as it may disappoint structural geologists who prefer manual 
manipulation and visual appreciation. 

To run a test sample open the file MLLF Test 60.csv. This data is the 60 point oolth sample used in 
section 3.1, and was carefully selected to avoid spurious points, and to avoid a directional bias. Select 
the command Analyze > Calculate Ellipse. Note that the only available options are the MLLF options, 
the other options all require ellipse data. Select Mean log likelihood, leave Cross validate off as in 
Figure 20, and press OK.
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A progress dialog will appear as in Figure 21, the display shows the search iteration passes in degrees, 
and is done at 180. The process should complete in less than a minute, and the results displayed in the 
Log Window, and on the Fry Plot (Figure 22).

The results reported in the log file are:

N = 60
MLLF Calculations
–----------------
Pass    Mean LL      R    Phi     Cutoff        Stat    Density
   0   -0.31829   1.90  25.00   86.98953     0.67361    0.84687
MLLF Results
–-----------
Point statistics:

Figure 20. The Calculate Ellipse Dialog 
showing the MLLF options available for a set of 
point-only data.

Figure 21. Progress dialog for the MLLF grid 
search without cross validation.
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Number                        =         60
Calculated density            =    0.00004
Real density                  =    0.00000
Results:
Mean log-likelihood           =   -0.31829
R, strain ratio               =    1.90000
Phi, angle of max strain axis =   25.00000
Cutoff radius                 =   86.98953

The Fry plot of the mean log likelihood function (MLLF) maximization search results is shown in 
Figure 22. The ellipse is the result of the MLLF grid search. The green markers highlight the Fry 
neighbor points, those that maximize the MLLF. Note the ellipse is the result of the intensive grid 

Figure 22. Fry plot with results of the mean log likelihood function (MLLF) maximization search.
The ellipse is the result of the MLLF grid search. The green markers highlight the Fry neighbor 
points.
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search, and is not simply a linear least squares fit as used in Sections 3.1 and 3.2. 

To test the cross validation procedure, go back and check the Cross validation option in the 
Preferences Dialog. The progress dialog now is displayed as in Figure 23.  There are now three 
iteration passes displayed, the first is 0 to 10, where 0 is the first calculation as done above. Passes 1 to 
10 are the coss validation iterations, 1 to 60 are the data points, and 1 to 180 are the Φ grid search in 
degrees. The R grid search values (0.1 to 20.0 by default), and the 1 to 50 distance search loops are not 
displayed.

The MLLF search is computationally intensive, especially for cross validation (during some test runs I 
set my laptop on marble coasters to keep it from overheating). After about 6 hours (on a 3.06 GHz Intel
Core 2 Duo iMac) the process completes, and the dialog displays OK. You can cancel the run at any 
time, and the results of the completed passes will be displayed.

Mean Ellipse Calculations
MLLF Test 60.tsv
2014-05-31 16:30:46
==============================
N = 60
MLLF Calculations
-----------------
Pass    Mean LL      R    Phi     Cutoff       Stat    Density
   0   -0.31829   1.90  25.00   86.98953    0.67361    0.84687
   1   -0.31610   1.90  25.00   86.98953    0.68773    0.86122
   2   -0.31603   1.90  25.00   86.98953    0.69522    0.87607
   3   -0.31882   1.90  25.00   86.98953    0.67496    0.89144
   4   -0.31651   1.90  25.00   86.98953    0.68968    0.90736
   5   -0.31536   1.90  25.00   86.98953    0.70494    0.92386

Figure 23. Progress dialog for the MLLF grid 
search with cross validation.

Figure 24. Progress dialog for the MLLF grid 
search with cross validation when complete.
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   6   -0.32428   1.80  23.00   87.24708    0.68393    0.93542
   7   -0.31554   1.90  25.00   86.98953    0.69945    0.95872
   8   -0.31327   1.90  25.00   86.98953    0.71578    0.97716
   9   -0.31454   1.80  23.00   87.24708    0.69591    0.99044
  10   -0.31451   1.90  25.00   86.98953    0.69099    1.01624

MLLF Results
------------
Point statistics:
Number                        =         52
Calculated density            =    0.00004
Real density                  =    0.00004

Results:
Mean log-likelihood           =   -0.31327
R, strain ratio               =    1.90000
Phi, angle of max strain axis =   25.00000
Cutoff radius                 =   86.98953

Finished: 2014-05-31 22:49:58    

The results of pass 0 are identical to the previous result, however the cross-validation procedure located
a slightly better solution, in pass 8 the mean log likelihood is -0.31327, instead of -0.31829. The 
resulting Fry plot with 8 less neighbor points is shown in Figure 25.
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Figure 25. Fry plot of the results using the cross-validation option for mean log likelihood 
maximization.
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4. Strain from Lines 
[Documentation in preparation]

4.1 Analytical Wellman Analysis 

The Wellman method can be applied to objects in which two lines can be identified that have constant 
initial angles, such as brachiopod hinge and medial lines which are initially perpendicular (Wellman, 
1962; Ramsay, 1967). For brachiopods not parallel to a principal strain, this angle will be distorted by 
shear strain. 

Wellman's graphical technique is illustrated in many structural geology laboratory manuals (e.g., 
Ragan, 2009). An analytical solution to the problem was given by Vollmer (2011), which is 
implemented in implemented in EllipseFit. To try the method, open the file 

LA - Ragan 1985 F10_1a.png

as an image. This is from Ragan (1985), and is used in many structural geology classes as an exercise. 
To begin click on the digitizing icon until the Line Pair icon is displayed, or use the menu command 
Digitize Line Pair. For each brachiopod click on the endpoints of each of the two lines, the hinge line 
and medial line. When done the lines appear in red, and the yellow cursor appears at the intersection. 
Mistakes can be corrected by using the Cut icon, or by deleting the line pair in the Data Window.
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After digitizing one line pair, open the Wellman Plot using the menu command Analyze > Wellman 
Plot. The plot shows the parallelogram corresponding to the brachiopod (Figure 27). The parallelogram 
sides parallel the line pair. Note the two additional points used for the construction.

Continue digitizing the remaining line pairs. Figure 28 shows the plot after three line pairs. The yellow 
cross cursor highlights the corresponding data point intersection and parallelogram, and the data is 
selected in the Data Window.  If the Find icon is pressed, as in Figure 28, you can search on the plot to 
locate the corresponding data. As in digitizing points, this allows the identification of outliers or 
spurious data.

Figure 26. The Image Window 
after opening the example data 
from Ragan (1985). The hinge 
and medial lines are assumed 
initially perpendicular. One line 
pair has been digitized. Note the 
Line Pair icon is visible.
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Figure 27: The analytical Wellman plot after 
digitizing one line pair as in Figure 26. Note the 
Find icon is selected and that the parallelogram 
and corresponding brachiopod are selected with 
the yellow cursor. 

Figure 28: The analytical Wellman plot after 
three line pairs have been digitized.
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Figure 29 shows the final analytical Wellman plot after all 8 line pairs have been digitized. Examine the
Log Window (Window > Log) and note that at each step EllipseFit calculated the best-fit ellipse. 

Analytical Wellman Ellipse Results
Wellman Data.tsv
2014-06-01 21:39:47
==============================
N           = 8
Point pairs = 9 (symmetric)
R           = 1.773
Φ           = 96.10°
n           = 9
RMS         = 0.025

Figure 29: The final analytical Wellman plot after all 8 line pairs from the brachiopods in Figure 
27 have been digitized.
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The calculation is the same as described in Sections 3.1 and 3.2,  minimizing the sum of the squares of 
the residuals the points from the ellipse using a LU decomposition. Similarly, the RMS value is the 
root mean square measure of the variation of the residuals from the ellipse, that is the square root of the
sum of the squares of the residuals of the data from the fitted ellipse. It is a measure of goodness of fit 
of the ellipse, but is not technically an error. The RMS will be zero  for two line pairs. The calculation 
includes the constriction line, so the ellipse has 9 point pairs including the 8 data points.

In theory, objects like graptolites that have a constant, non-perpendicular, angle between stipe and 
thecae, can be treated in the same fashion (Ramsay, 1967). Dirringer and Vollmer (2013) compared the 
automated Wellman method and the mean polygon moment ellipse method (Section 5.1) using a sample
of slate with deformed Ordovician graptolites. The sample was oriented with the slaty cleavage as the 
X axis. The center lines and lower thecae lines were digitized in 120 locations for the Wellman test, 
only one species had clearly defined thecae lines. The outlines of 31 whole graptolites and 38 partial 
graptolites were digitized for the polygon method test. 

The mean polygon moment ellipse was R = 2.079 ± 0.122, Φ = 177.48° ± 4.57°, parallel to the slaty 
cleavage. The polygon method does not require assumptions about initial shapes, only that they are 
initially random. Interpreting the data for the analytical Wellman method was problematic, as it many  
outliers around a central ellipse. Removal of 77 outliers, believed to be due to initial variations in 
thecae angle, was required before the ellipse could be clearly resolved. While most outliers could be 
clearly identified, the process was subjective, and single outliers significantly effected the result. The 
result for 43 data points was R = 2.761, Φ = 0.50°, RMS = 0.294, parallel to cleavage.   

They concluded that the necessary assumptions about initial geometry for the analytical Wellman 
method were not met, and the polygon method, with no such required assumptions about initial 
geometry, was preferred. 

Figure 30. Sample of deformed graptoliferous slate used by Dirringer and Vollmer 
(2013) for comparison of the automated Wellman and mean polygon moment 
ellipse methods.



EllipseFit User Manual Page 32

Figure 31. The graptoliferous slate sample of 
Figure 24 after retrodeforming to remove the 
strain calculated by the mean polygon 
moment ellipse method, R = 2.079, Φ = 
177.48°
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4.2 Line Stretch Analysis 

[Documentation in preparation]
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5. Strain from Ellipses and Polygons
[Documentation in preparation]

5.1 Digitizing Ellipses 

[Documentation in preparation]

5.2 Moment-Equivalent Polygons 

[Documentation in preparation]
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6. Ellipse Data Plots 
[Documentation in preparation]

6.1 Elliott Polar Plot 

[Documentation in preparation]

The polar Elliott plot (Elliott, 1970) is a polar plot of the natural log R and 2ϕ. This is a natural 
parameter space for strain, and the plot is a simple hyperboloidal projection that gives an undistorted 
representation (Yamaji, 2008; Vollmer, 2011), It is therefore generally preferred over the R f ϕ plot of 
the next section. 

Most of the plots in EllipseFit are interactive.  When the Binoculars Icon is selected, points can be 
selected and the selection will automatically update on other plots and in the Data Window.To illustrate,
Figure 33 shows a Fry plot with the points generated by the outlier selected in Figure 32.

Figure 32. Polar Elliot plot with digitized data 
from the oolith photomicrograph in Figure 1. 
One outlier is selected.
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This outlier falls well inside the central void, and probably does not meet the assumptions necessary for
a  Fry analysis, i.e., a truncated Poisson distribution.

6.2 Rf ϕ Plot

The Rf ϕ plot (Dunnet, 1969) is a Cartesian plot of Rf , or more commonly natural log Rf , versus ϕ, and
is widely used in strain analysis (e.g.,  Lisle, 1985; Ramsay and Huber, 1983). Although the origional 
plot had Rf, as the ordinate, it has been presented with either variable as the ordinate. This plot is 
probably more widely recognized and used than the polar Elliott plot, but it has more distortion at low 
strains.

The Rf ϕ plot distorts the strain space, especially at low strains (Vollmer, 2011). By analogy, a Mercator
projection of the Earth projects the North and South Poles as lines, causing great distortion in polar 
regions, Greenland appears larger than South America on such a map, although it is one eight the size 
(Snyder, 1987). Similarly, the Rf ϕ plot projects the point of zero strain to a line, effectively stretching it
along the Rf  = 1 axis. 

Figure 33. Fry plot with data generated from the 
oolith photomicrograph in Figure 1. The selected
points are those generated by the outlier selected
in the polar plot of Figure 32



EllipseFit User Manual Page 37

Figure 34. Rf ϕ plot with digitized data from the 
oolith photomicrograph in Figure 1, note the 
stretching near R = 1. One outlier is selected, the
same as in Figures 32 and 33, all of which are 
automatically updated interactively.



EllipseFit User Manual Page 38

6.3 Hyperboloidal Plots 

[Documentation in preparation]

Figure 35. The unit hyperboloid, H2, showing cartesian axes, x0, x1, x2, and point C = (1, 0, 0), which 
corresponds to the circle R = 1. The plane x1x2 is the projection plane for azimuthal projections, the polar strain 
plot. Points on H2 are x = (x0, x1, x2)T, with origin C. If strain is represented by (ρ, ψ) = (log R, 2ϕ), then an 
ellipse is x = (cosh ρ, sinh ρ  cos  ψ,  sinh ρ  sin  ψ)T
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Figure 36. The unit hyperboloid with superimposed cylinder with axis x0. The cylinder is the projection surface 
for cylindrical projections, as the Rf ϕ plot.
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Figure 37. Synthetic data of 300 ellipses strained to values of
R = 2 and R = 4 displayed on hyperboloidal azimuthal 
projections: (a) equidistant, (b) stereographic, (c) equal-area, 
(d) orthographic, and (e) gnomic.The best-fit ellipse is 
plotted as a white circle, the centroid of the projected data is 
plotted as a gray circle.
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7. Mean Ellipse Calculation 
Determination of the finite strain from a sample of initially randomly oriented ellipses deformed 
homogeneously with their matrix is of considerable importance for geological strain analysis, and 
numerous graphical and mathematical techniques exist (e.g. Ramsay, 1967;  Ramsay and Huber, 1983; 
Mulchrone and Choudhury, 2004). The most direct method is a numerical calculation of the mean 
(Shimamoto and Ikeda, 1976; Mulchrone et al., 2003; Yamaji, 2008), which is discussed here.

Mulchrone and Choudhury (2004) showed that the method can be extended from ellipses to arbitrary 
shaped objects by using moment equivalent ellipses. This allows randomly oriented objects of any 
initial shape to be used in strain analysis, thus extending this technique considerably. This is 
implemented in EllipseFit using the Polygon and Filled polygon digitizing options.

7.1 Mean Ellipse

Shimamoto and Ikeda (1976) devised a direct numerical solution involving the determination of the 
eigenvectors of the mean shape matrix, a two by two matrix representing an ellipse, which are summed,
normalized, and the eigenvectors determined giving the mean ellipse, essentially a way of determining 
a mean for a matrix quantity. 

Mulchrone et al. (2003) devised an equivalent method by determining the mean radial length (MRL), 
that does not require eigenvector calculation, and gives mathematically equivalent results. Yamaji 
(2008) showed that using a hyperbolic geometry, the mean can be calculated as a hyperbolic vector 
mean. Vollmer (2010) implemented these three methods independently in EllipseFit, and verified that 
these give numerically identical results (Table 1). 

When calculating the mean ellipse using the Calculate Ellipse command, the method is selected in the 
Calculate Ellipse dialog, from the Eigenvector, Mean radial length, and Hyperbolic mean options. 
These three methods give identical results, and only one need be selected. EllipseFit uses the 
eigenvector method (Shimamoto and Ikeda, 1976), which is marginally faster, by default.
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7.2 Bootstrap Error Analysis 

[Documentation in preparation]

Table 1. Comparative results for ellipse-fitting techniques implemented in EllipseFit. 
Eigenvector = Shape matrix eigenvectors (Shimamoto and Ikeda, 1976). Radial = Mean 
radial length (Mulchrone, et al,  2003; Mulchrone, 2005). Hyperboloidal = Hyperboloidal
vector mean (Yamaji, 2008). From Vollmer (2010).

Data Set Imposed (R,  ϕ) Eigenvector Mean Radial Hyperbolic
Oolith 1, 0 1.628, 25.74 1.628, 25.74 1.628, 25.74
n = 252 ±  0.018, 0.73  ± 0.018, 0.62  ± 0.013

0.614, 25.74 1.000, 113.32 1.000, 113.32 1.000, 113.32
 ± 0.007, 55.27  ± 0.011, 633.74 ± 0.013

Synth 1 1, 0 1.031, 40.20 1.031, 40.20 1.031, 40.20
n = 300 ± 0.021, 33.24 ± 0.025, 22.81 ± 0.030

2, 0 2.012, 1.16 2.012, 1.16 2.012, 1.16
± 0.048, 1.16 ± 0.050, 0.92 ± 0.032

4, 0 4.023, 0.46 4.023, 0.46 4.023, 0.46
± 0.101, 0.53 ± 0.099, 0.37 ± 0.031

Synth 2 1, 0 1.016, 146.03 1.016, 146.03 1.016, 146.03
n = 1000 ± 0.012, 35.35 ± 0.014, 24.51 ± 0.016

2, 0 2.012, 179.46 2.012, 179.46 2.012, 179.46
± 0.026, 0.71 ± 0.27, 0.51 ± 0.016

4, 0 4.024, 179.78 4.024, 179.78 4.024, 179.78
± 0.052, 0.30 ± 0.053, 0.21 ± 0.017

Figure 38. Error analysis is shown by an 
equidistant azimuthal plot of bootstrap results of 
1000 resamples from oolite data. The mean 
vector of the bootstrap mean vectors is rotated to
C. The dispersion of the points is a measure of 
the error in the best-fit ellipse. 
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7.3 Simple Means and Centroids 

The Centroids and Simple means options give approximations less accurate than the true mean, and are
provided for comparison only. The centroids of the polar and Rf ϕ plots can be plotted for comparison, 
but should not be confused with the true mean. Note in particular, that the centroid of the polar Elliot 
plot is close to, but is not equivalent to the true mean. The centroid of the Rf ϕ plot can deviate 
significantly from the true mean. 
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8. Ellipsoid Calculation 
For regional strain studies it is generally necessary to determine the three-dimensional strain ellipsoid, 
with three stretches and their orientations, normally expressed as trends and plunges. This can be 
simplified if assumptions can be made about the relationship between foliations and strain, for example
slaty cleavage is commonly assumed perpendicular to the minimum stretch. However, in the general 
case it is necessary to determine the two-dimensional strain on a number of different planes through a 
sample (or outcrop where it can be considered homogeneous), and combine them to determine the 
strain ellipsoid in three dimensions. This is a difficult mathematical problem, and numerous solutions 
have been proposed (e.g., Shimamoto and Ikeda 1976; Owens, 1984; Robin, 2002; Shan, 2008; 
Mookerjee and Nickleach, 2011). EllipseFit implements the method of Shan (2008) as discussed in 
Section 8.2.

8.1 Global Coordinates and Sample Collection

The two-dimensional strain ellipses considered thus far have been referred to X, Y coordinates, where 
X is to the right, and Y is down the image. These coordinate axes are indicated by the blue lines on the 
top and left of the Image Window. The angle ϕ is the positive angle (clockwise) from X. This 
coordinate system was chosen to simplify the relationship to the global coordinates referred to here as 
X', Y', Z', and to simplify the calculation of the three-dimensional strain ellipsoid. The global 
coordinates are equivalent to North, East, Down (NED).

In Figure 39 the gray plane is a section plane that corresponds to an image analyzed for two-
dimensional strain as discussed in earlier chapters. The X axis is parallel to the strike of the plane, 
using the standard right hand rule  (e.g., Pollard and Fletcher, 2005), as shown in Figure 37. The strike 
is given by θ, the clockwise angle from North, the standard azimuth in degrees. The dip of the plane is 
the angle δ. The calculated strain ellipse is given by R = A/B = LMax/LMin, and ϕ, the angle from X, 
which is its pitch in global coordinates. This is referred to here as a section ellipse.
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In order to calculate the strain ellipsoid from the section ellipses, each section ellipse must undergo a 
coordinate transformation from local X, Y coordinates to global X', Y', Z' coordinates. This is done 
automatically by EllipseFit, but the user must take great care to properly prepare samples. Time taken 
at this stage will save much aggravation later on. A sample collected in the field must be carefully 
oriented, recording its strike and dip (other conventions are fine, but the strike is the X coordinate axis 
so is used here). A suitable marking is a strike arrow and a dip tick (Figure 39), if possible on a surface 
that is not overhanging.

A minimum of three sections must be made through the sample, although more is preferred. Shan's 
method (Section 8.2) relaxes this requirement if lineation data is used as well, but Vollmer (2010) 
showed that the error range in natural samples can be large, so a minimum of three sections is 
recommended. If available, lineation data can supplement the section ellipses (Section 8.2).

The sections should be made at high angles to each other, but it does not need to be 90°, a restriction of 
some methods (e.g., Shimamoto and Ikeda, 1976). In making the sections be careful not to destroy the 
strike arrow and dip tick (it happens). The sample can then be taken outside, away from magnetic 
fields, and reoriented. The strikes and dips of the section planes can then be measured, and a strike 
arrow and dip tick marked on each face. The faces can then be photographed, or thin sections made, 
and photographed. Keeping thin sections correctly oriented is challenging, keep the strike arrow 
parallel to one side and pointing right.

To minimize confusion, make sure each photograph is oriented with the section strike to the right, and 
with the dip line down. Careful photography is best, but EllipseFit can rotate an image an arbitrary 

Figure 39. Coordinate system for section 
ellipses. The global coordinates are X' = North, 
Y' = East, and Z' = Down (NED). The plane 
with the section ellipse has a strike, θ (using the 
right hand rule), and dip, δ. The section ellipse 
has a pitch, ϕ, and R = A/B, where A and B are 
the maximum and minimum axes. A suggested 
strike arrow and dip tick marking is shown.  
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amount if necessary (see Chapter 12 Image Analysis). It is better to do it now than after digitizing the 
data, although EllipseFit can rotate the data if needed (see Chapter 11 Data Transformation).  

One last important detail is to keep track of the viewing direction. The strike arrow must point to the 
right in the section image. This means it is dipping towards you. If the strike arrow points left, you are 
looking at the underside of the section and it is dipping away from you. If so, you need to flip the 
image horizontally about a vertical axis. EllipseFit can do this (Edit > Rotate Image > Flip Horizontal), 
and it is better to fix the image before digitizing. Vertical sections are not a problem if the recorded 
strike is kept to the right in the images.

 If one is lucky to have outcrops with well exposed sections the process is greatly simplified, but the 
same principles apply.

8.2 Shan Ellipsoid Calculation

Shan's method for determining the strain ellipsoid from section ellipses has similarities to the methods 
of Owens (1984) and Robin (2002), as they are all direct non-iterative calculations. Shan's method, 
however, also allows the inclusion of stretching lineation data, so has additional flexibility. Ellipsoids 
can be represented by shape matrixes, and the solution desired is the optimal shape matrix. Each 
section ellipse, or section lineation, adds one or two linear equations describing the shape matrix, which
can be solved as an eigenvalue problem. Shan solved the problem by assuming the matrix can be 
located on a six-dimensional hypersphere centered at the origin, and recognized that the smallest 
eigenvector of the data matrix is an optimal solution. 

Before giving an example calculation, it is useful to compare it with some other methods. Shan's 
method has been tested on synthetic and natural samples, the following are some of the results of 

Table 2. Data file field headers and corresponding symbols. The headers define columns 
in data files read and written by EllipseFit. . 

Fields Alternate Symbol Definition
ID N Datum identification number
X', Y', Z' Global coordinates (North, East, Down)
X, Y Local coordinates, normally strike and dip line
Strike Theta θ Strike of section following right-hand rule
Dip Delta δ Dip of section plane from horizontal
Max, Int, Min A, B, C Axes of an ellipsoid
Max, Min A, B Axes of a sectional ellipse
R Strain ratio, Max/Min
Phi Pitch ϕ Angle in XY from X to ellipse axis Max
R* Best-fit estimate of R
Phi* ϕ* Best-fit estimate of ϕ
Delta R ΔR Misfit between R* and R
Delta Phi Δϕ Misfit between ϕ* and ϕ
S1, S2, S3 S1, S2, S3  Principal stretches
Trend t1, t2, t3 Trend of ellipsoid axis
Plunge p1, p2, p3 Plunge of ellipsoid axis
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Vollmer (2010). Owens (1984) tested his method on a sample of slate from Dinorwic North Wales, for 
which the strains had been calculated from reduction spots on 8 sections. His data was also used by 
Launeau and Robin (2005) to test Robin's (2002) method. Table 3 shows results of Vollmer's (2010) 
tests on Shan's method using Owen's data.

The test involves calculating the strain ellipsoid from the section ellipses, then from the calculated 
ellipsoid, determining the two-dimensional sections corresponding to the input data. These are reported
as R*, ϕ* in the table. The difference is a residual. These are reported as ΔR, Δϕ in the table. An 
additional result is shown by using the calculated section ellipses to calculate an ellipsoid. These are 
reported as ΔRT, ΔϕT, and are negligible indicating success in retrieving the ellipsoid. Table 4 shows 
the results of the ellipsoid calculation from this sample as calculated using the methods of Owens 
(1984), Robin (2002), and Shan (2008). The results are compared graphically in Figure 40. The 
calculations and plots were done in EllipseFit 2 (Vollmer, 2011) and Orient 2 (Vollmer, 2012). There 
negligible differences between the results using the methods of Robin and Shan, the results using the 
method of Owen deviate a small amount from them.

Table 3.  Results of test of Shan's (2008) method using data from Owens (1984). R*, ϕ* 
are the calculated b* (Table 4) section ellipses. Misfits ΔR, Δϕ indicate the error between 
calculated and measured ellipses. Calculated section ellipses were used to back-calculate 
bT* (Table 4) and RT*, ϕT*.  Misfits ΔRT, ΔϕT indicate that the method does retrieve b*.
From Vollmer (2010).

j θ δ A B R ϕ R* ϕ* ΔR Δϕ RT* ϕT* ΔRT ΔϕT
1 302 78 16.5 4.5 3.670 165 3.083 165.700 0.587 0.700 3.082 165.700 0.002 0.000
2 301 77 9.5 3.5 2.710 166 3.076 165.380 0.366 0.620 3.075 165.380 0.005 0.000
3 302 75 20.5 6.8 3.010 166 3.024 165.310 0.014 0.690 3.023 165.310 0.003 0.010
4 201 71 37.0 6.0 6.170 173 6.418 172.780 0.248 0.220 6.420 172.780 0.001 0.000
5 178 71 7.5 1.5 5.000 0 4.618 179.090 0.382 0.910 4.618 179.090 0.002 0.000
6 18 79 16.7 3.0 5.570 10 5.923 7.870 0.353 2.130 5.924 7.870 0.004 0.000
7 17 78 22.0 4.0 5.500 8 5.792 7.710 0.292 0.290 5.793 7.710 0.003 0.000
8 19 78 18.0 3.0 6.000 7 5.987 8.200 0.013 1.200 5.989 8.200 0.001 0.000
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The file: 

ES - Owens 1984.csv

contains the 8 section ellipse data from Owens (1984). Open this file in EllipseFit. The data as 
displayed in the Data Window is shown in Figure 41. There are 8 section ellipses, for each there is the 
Max, and Min (the axial lengths LMax, LMin ), the strain ratio R =  Max / Min, Phi (ϕ), the pitch of R 
from the X axis (X = strike), the strike angle  (θ), and the dip angle (δ) (see Figure 39). This is data 
then, that, in EllipseFit, would be determined from oriented photographs of each of the 8 sections.

Select the command Analyze > Calculate Ellipsoid and the Calculate Ellipsoid Dialog is displayed as in 
Figure 42. The results will be written to the Log Window. Checking Append results will append the 
ellipsoid results to the open Data Window, so it can be plotted on Flinn and Nadia plots. Check Save 
orientations to save the trends and plunges of the principal axes to a file that can be opened in Orient 3 

Table 4.  Comparison of calculated strain ellipsoids. Owens from  
Owens (1984). Robin from Launeau and Robin (2005), 
unweighted method of Robin (2002). Shan (b*) from Vollmer 
(2010), Shan's (2008) method. b** is a test to retrieve b*. The data
is plotted in Figure 38. From Vollmer (2010).

Figure 40. Comparison of calculated strain ellipsoids. O = Owens (1984). R = Launeau and Robin
(2005) using unweighted method of Robin (2002). S = EllipseFit using Shan's (2008) method. 
From Vollmer (2010).

Axis Owens Robin Shan (b*) b**
S1 2.340 2.626 2.565 2.567
t1 29.000 37.100 34.960 34.970
p1 10.000 11.300 10.890 10.890
S2 1.197 1.112 1.131 1.131
t2 122.000 129.500 127.350 127.360
p2 14.000 11.700 12.230 12.230
S3 0.357 0.343 0.345 0.345
t3 265.000 264.500 264.440 264.440
p3 73.000 73.600 73.510 73.510
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(Vollmer, 2015) for plotting the axes on spherical projections. 

The Bootstrap option performs a bootstrap-type error analysis, using the number of resamples specified
in the Resamples edit box, 5000 is the default value. Finally, the Save bootstrap will save the 5000 
results of the resampling, which is normally unnecessary. Press OK to start the calculation. You will be 
prompted to save the orientation data files, and shortly the results appear in the Data Window (Figure 
43) and the Log Window.

The Data Window now displays the ellipsoid principal axes Max, Int, Min as stretches (SMax, SInt, SMin), 
and 95% confidence intervals calculated by the bootstrap. The section ellipses show the back-
calculated values for R and ϕ, and the corresponding residuals. The last columns the distance residuals,
which are the hyperbolic distance residuals. 

Figure 41. The section data from a sample of 
slate from Dinorwic, North Wales from Owens 
(1984), displayed in the EllipseFit Data Window.

Figure 42. EllipseFit's Calculate Ellipsoid 
Dialog.
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The Log Window reports the following:

Best-Fit Ellipsoid Calculations
ES - Owens 1984
2014-06-02 19:51:39
==============================
N = 8
Ellipsoid axes as stretches:
Maximum (A)      = 2.565
Trend            = 35.02
Plunge           = 10.90
Intermediate (B) = 1.132
Trend            = 127.41
Plunge           = 12.22
Minimum (C)      = 0.344
Trend            = 264.44
Plunge           = 73.51
Root mean square of section residuals:
R +/-            = 0.333
Phi +/-          = 0.85
Distance +/-     = 0.126
See data grid for section residuals
Bootstrap confidence intervals (5000 resamples)
Maximum (A):
  Stretch +/-    = 0.973
  Stretch 95%    = 1.385
  Stretch 99%    = 3.603
  Trend +/-      = 0.186
  Trend 95%      = 0.269
  Trend 99%      = 0.369
  Plunge +/-     = 0.037
  Plunge 95%     = 0.058
  Plunge 99%     = 0.083
Intermediate (B):
  Stretch +/-    = 0.106
  Stretch 95%    = 0.234
  Stretch 99%    = 0.415
  Trend +/-      = 0.187

Figure 43. The Data Window after calculating the optimal ellipse using Shan's method.
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  Trend 95%      = 0.273
  Trend 99%      = 0.382
  Plunge +/-     = 0.041
  Plunge 95%     = 0.057
  Plunge 99%     = 0.073
Minimum (C):
  Stretch +/-    = 0.030
  Stretch 95%    = 0.063
  Stretch 99%    = 0.117
  Trend +/-      = 0.031
  Trend 95%      = 0.043
  Trend 99%      = 0.056
  Plunge +/-     = 0.014
  Plunge 95%     = 0.020
  Plunge 99%     = 0.026

This includes all 3 principal stretches, and their trends and plunges, with measures of error.  To view 
the results graphically, first select Analyze > Flinn Plot. A Flinn plot (Section 9.1) is a plot of the ratios 
A/B = SMax/SInt versus B/C = SInt/SMin. , and is commonly used for displaying strain ellipsoid data (e.g. 
Ramsay and Huber, 1983).

Now select Analyse > Nadia Plot, to display the results on a Nadai plot. A Nadai plot (Nadia, 1950; 
Hossack, 1968; Section 9.2) is based on natural, or logarithmic strain, which is also the basis for the 
hyberboldal projections discussed in Section 6.3. This provides an undistorted representation of the 
deviatoric strains and is preferred by many for that reason (Brandon, 1995).

Figure 44. Flinn plot of the ellipsoid axial ratios 
determined from the Shan calculation, with a 
95% confidence region. 
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The calculated strain has large 95% error region as shown in both plots. Examining the data (Figure 
43), shows that section 6 has the largest distance residual. Select it, delete it and preform the ellipsoid 
calculation again. Figure 46 shows the updated Flinn plot, which now shows both solutions.

Similarly the Nadia plot has been updated to reflect the newly calculated results.

Figure 45. Nadai plot of the ellipsoid axial ratios
determined from the Shan calculation with a 
95% confidence region.

Figure 46. Flinn plot of the ellipsoid axial ratios 
determined from the Shan calculation, with 95%
confidence regions, after deleting section 6.
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Finally, the resulting axes are plotted on a lower hemisphere equal-area projection using Orient 
(Vollmer, 2010, 2015). The strain axes calculated from all 8 sections are plotted as circles, and the axes 
section 6 removed are plotted as diamonds. Red = SMax, green = RInt, blue = RMin. 

[Documentation in preparation]

Figure 47. Nadia plot of the ellipsoid axial ratios
determined from the Shan calculation, with 95%
confidence regions, after deleting section 6.

Figure 48. Lower hemisphere equal-area 
projection of the strain ellipsoid axes. Circles are
the axes calculated from all 8 sections, diamonds
with section 6 removed. Red = SMax, green = RInt,
blue = RMin. 
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Table 5. Results of test of ellipsoid-fitting using two ellipses and six lineations from 
synthetic section ellipses calculated from b* (Table 4). For ten tests six of the eight RTj 
values were omitted. Subscripts indicate the sections with RTj data. Results are all 
identical down to round-off error.

Axis bT14* bT24* bT34* bT45* bT46* bT47* bT48* bT56* bT57* bT58*
S1 2.569 2.570 2.570 2.570 2.569 2.569 2.570 2.568 2.568 2.570
t1 35.060 35.100 35.010 35.180 35.030 35.030 35.010 35.230 35.220 35.010
p1 10.900 10.910 10.890 10.930 10.900 10.900 10.890 10.940 10.940 10.890
S2 1.130 1.131 1.130 1.132 1.130 1.130 1.130 1.133 1.133 1.130
t2 127.450 127.490 127.400 127.570 127.420 127.420 127.400 127.620 127.610 127.400
p2 12.210 12.200 12.220 12.190 12.220 12.220 12.220 12.180 12.180 12.220
S3 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344
t3 264.450 264.440 264.450 264.440 264.450 264.450 264.450 264.440 264.440 264.450
p3 73.510 73.520 73.510 73.520 73.510 73.510 73.510 73.520 73.520 73.510

Table 6. Test of ellipsoid-fitting using two ellipses and six lineations from eight measured
section ellipses (Table 5). For ten tests six of the eight Rj values were omitted. Subscripts 
indicate the sections with Rj data. Results are highly variable, especially as axial ratios, 
which are plotted in Fig. 8.

Axis b14* b24* b34* b45* b46* b47* b48* b56* b57* b58*
S1 nan 3.422 4.379 3.196 3.389 3.371 3.469 3.126 3.301 3.127
t1 nan 41.760 47.150 43.140 20.310 20.330 20.320 42.680 45.960 37.500
p1 nan 11.690 12.580 12.310 8.060 8.060 8.060 12.240 12.790 11.280
S2 nan 0.902 0.836 1.052 0.584 0.585 0.578 0.301 1.054 1.021
t2 nan 133.950 139.230 135.430 235.100 234.930 235.570 264.470 138.190 129.850
p2 nan 10.430 9.240 10.370 80.220 80.240 80.160 73.780 9.730 11.610
S3 nan 0.323 0.273 0.297 0.505 0.507 0.499 0.561 0.287 0.313
t3 nan 264.630 264.590 264.450 111.090 111.110 111.110 264.470 264.450 264.490
p3 nan 74.230 74.300 73.800 5.510 5.470 5.600 73.780 73.830 73.700
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Figure 49. Test of ellipsoid-fitting using two ellipses and six lineations from eight measured 
section ellipses (Table 5). For ten tests six of the eight Rj values were omitted. Subscripts indicate
the sections with Rj data. Results are highly variable, especially as axial ratios.
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9. Ellipsoid Data Plots
[Documentation in preparation]

9.1 Flinn Plot

[Documentation in preparation]

A Flinn plot is a plot of the ratios A/B = SMax/SInt versus B/C = SInt/SMin, and is commonly used for 
displaying strain ellipsoid data (e.g. Ramsay and Huber, 1983).

As with the ellipse plots, the Flinn and Nadia plots are interactive, selecting a point in one will 
automatically select the corresponding data point on the other plot, and in the Data Window.

Figure 50. Log Flinn plot displaying deformed pebble ellipsoids, 
Bygdin area, Norway, from Hossack, 1968. This plot is 
interactive, with the Binoculars Icon selected, data points can 
be selected and will be simultaneously updated on the Nadai plot
and in the Data Window, the selected data point is also 
displayed in Figure 51.
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9.2 Nadai Plot

[Documentation in preparation]

The Nadai plot (Nadia, 1950; Hossack, 1968; Section 9.2) is based on natural, or logarithmic strain, 
which is also the basis for the hyberboldal projections discussed in Section 6.3. This provides an 
undistorted representation of the deviatoric strains and is preferred by many for that reason (Brandon, 
1995).

Figure 51. Nadia plot displaying deformed pebble ellipsoids, 
Bygdin area, Norway, from Hossack, 1968. This plot is 
interactive, with the Find icon selected, data points can be 
selected and will be simultaneously updated on the Flinn plot 
and in the Data Window, the selected data point is also 
displayed in Figure 48.
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Figure 52. Deformed pebble conglomerate, Bygdin area, Norway, where the data plotted  in 
Figures 50 and 51 was collected by Hossack (1968). Photograph by F. W. Vollmer. 
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10. Data Transformation
[In preparation]

11. Data Synthesis
[In preparation]

12. Image Analysis
[In preparation]

12.1 Filtering

[In preparation]

12.2 Edge Detection

[In preparation]
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History
3.2.1 – 5 August 2015
• Cleaned up main preferences dialog control placements, and tooltips.
• Fixed bug causing jump of preferences dialog on preview.
• Optimized data grid display scrolling.
• Changed “N” column header to “ID”. ID is a unique integer assigned to identify a single particle. Files will 

read in correctly with either “N” or “ID”, but will be written with “ID”.
• Modified desktop icon.
• Replaced term “graph” with “plot” in menu and manual.
• Work on user manual.
• Implemented opening of multiple data files with associated data plots. File > New and File Close commands 

added. 
• Default view is now the Data Window instead of Image Window. 
• Open Data and Open Image shortcuts swapped. 
• The last Open Data and Open Image paths ares now saved.
• Fixes to Nadai and Flinn plots.
• Optimized messaging.
• Added warning dialog to Reset Preferences.

3.2.0 – 28 January 2015
• Prevented redrawing of data on image when adding or undoing digitized points to speed up redraw with 

numerous data points or slow processors. 
• Replaced StringGrid with DrawGrid and with numerous related internal modifications in viewing and updating

the data grid.
• Enabled status bar in Data Window.
• Changed SendMessages to PostMessages.
• Fixed enabling of Ratio Graph.
• Added multiple selections in Data Window. Use Command/Control click for adding or removing items, and 

Shift click to extend selection.
• Added multiple selections in Image Window. Use Command/Control click for adding or removing items.
• Added multiple selections to Rato, Flinn, Nadia, Polar, Rf-Phi, Wellman and Stretch Graphs. Use 

Command/Control click for adding or removing items. 
• Added multiple selections on Strain Map. Use Command/Control click for adding or removing items. 
• Fixed Rf-Phi Save As and Export commands.
• Added Select All, Select None, Select Inverse commands.
• Known bug: Audio alerts do not work in Linux.
• Known bug: Menu commands do not initially update in the Data Window. Work around is to click on Image 

Window and back to the Data Window.
• Trying to use File > Open Image (instead of File > Open Data) to open a data file now gives a warning dialog 

with the option to open it as a data file.
• Numerous changes to Analyse > Synthesize Data command. Particle ratios are randomly selected from a range

RMin...RMax on Ln(R), or from a Gaussian distribution on Ln(R) with a mean of Ln(RMean) and standard 
deviation of Sigma. Area can also be selected from a Gaussian distribution with a mean area of pi. Orientations
are selected randomly from either a range in phi or from a Von Mises distribution.  

• Fixed settings dependancies in Fry Panel of Preferences Dialog.
• Added Delaunay triangulation and Voronoi graphs to Strain Map options. 
• Added Delaunay nearest neighbor option to Fry Graph.

3.1.1 – 6 November 2014



EllipseFit User Manual Page 64

• Added the ability to open Microsoft Excel XLS (legacy) and XLSX formats, in addition to OpenDocument 
ODS spreadsheet, and delimited file (CSV, TSV) formats. In each case, a comment line starts with '//', and a 
header row identifying the data columns must precede the data rows.

• Fixed bug requiring “Max”, “Min” data and header as well as “R” for ellipsoid calculation. Also now allows 
“Pitch” header in place of “Phi”. Thanks to Kurt Burmeister for reporting this.

• Replaced timers with event messaging.
• Fixes to Analyze > Data Synthesis command, which failed in Windows. The collision tests counts have been 

increased to 10,000 x 10,000, which tightens adjacent particle contacts. 

3.1.0 – 4 June 2014
• Added bootstrap error analysis to ellipsoid calculations. This has some similarities to the kernel density 

estimation approach of Mookerjee and Nickleach (2011).
• Added saving of the ellipsoid axes orientations for plotting on spherical projections in Orient.
• Changed column headers A, B, C to Max, Int, Min to clarify the axial lengths. EllipseFit will open files with 

the old headers, but will save them using the new headers.
• Removed option to save files as “Space Delimited”. This format potentially causes issues parsing files with 

spaces in the header column. EllipseFit will still open space delimited files with recognizable headers.
• Added 95% confidence regions to Nadai graph.
• Added 95% confidence regions to Flinn graph.
• Added option to save bootstrap ellipsoid axes.
• Added numerous options to Synthesize Data command. These include generating the strain ratio from a 

Gaussian normal distribution, generating particle size from a Gaussian normal distribution, generating a 
preferred orientation from a Von Mises circular distribution,  generating centers at a truncated Poisson 
distribution. The latter is performed by randomizing the location in x, y and discarding collisions.

• Added an option to the Strain Map command to either plot scaled strain ellipses or particle axes.
• Implemented the maximum mean log likelihood function (MLLF) search procedure of Shan and Xiao (2011). 

This gives a high accuracy strain estimate from Fry-type data, that is, data from truncated Poisson 
distributions. It does not require ellipse data, and it is not subjective and is reproducible. 

• Fixed auto-scaling on Fry graphs.
• Significant progress on the User Manual.

3.0.3 – 13 May 2014
• Added transforms to image to rotate, flip, strain, unstrain, etc. To strain or unstrain both image and data, 

transform the image first. This calculates the origin offset in the new bitmap. Then transform the data at (X0, 
Y0) = (0.0, 0.0) with “Rectify” checked.

• Added transform data to Wellman-type data.
• Changed default bootstrap resamples from 300 to 5000.
• Rewrote ellipse standard error and confidence interval methods. Changed from using resample trials to 

calculate standard error and Student T for confidence interval, to use resampled data for both. Non-bootstrap 
MRL uses analytical error and Student T following Mulchrone (2005).

• Added option to save bootstrap resample ellipses.
• Added option to plot 95% confidence regions on Polar and Rf/Phi graphs using analytical error.
• Fixed bug that was swapping A and B radii while digitizing polygons.

3.0.2 – 21 April 2014
• Fixed bug in fill ellipse routine causing hangs at high thresholds.
• Fixed bug causing crash when opening page size dialog.
• Added strain map.
• Added synthesize data to create data sets.
• Added transform data to strain, unstrain, shear, etc., data.
• Changed names of digitize routines to reflect the objects, e.g., center points, ellipses, polygons, instead of the 
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results (e.g., polygon moment ellipse).
• Changed names of graphs to more common specific names attributing authors, Fry, Flinn, etc., instead of 

generic names.
• Internal change in form communication, from flags and timers to messages.
• Numerous additional fixes and changes.

3.0.1 – 6 April 2014 
• Fixed bug effecting symbol colors in svg graphics.
• Cleaned up the polar graph.
• Fixed cursor status strings on graphs.
• Fixed up contouring preferences.
• Added axial ratio Flinn type graph. 
• Added octahedral Nadai-Hsu type strain graph. 
• Added ellipse digitizing with polygon fill and moments.
• Fixed file save warning.
• Numerous internal changes.

3.0.0 – 24 March 2014
• First public release of Version 3.

3.0.0.28 - August 1, 2012
• Initial prerelease of Version 3.
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	2. Overview of Strain Analysis
	When attempting to unravel the history of a mountain belt, one starts with an outcrop or a hand sample. The lithology, textures, and mineralogy give clues to the past sedimentary environment, the temperature and pressure history, and geochronology gives the dimension of time. Strain analysis gives another dimension, a measure of the deformation enjoyed during that history.
	Geological strain analysis and theory is an important aspect of structural geology that is covered in numerous textbooks (e.g., Means, 1976; Hobbs, Means, and Williams, 1976; Ragan, 1985; Marshak and Mitra, 1988; Van der Pluijm and Marshak, 2004; Pollard and Fletcher, 2005; Twiss and Moores, 2007; Ragan, 2009; Fossen, 2010). Ragan (2009) and Ramsay and Huber (1983) provide excellent overviews of techniques for the analysis of strain in deformed rocks.
	Strain markers can be grouped into three general categories (Lisle, 2010; Mulchrone, 2013):
	1) Objects or groups of objects with known pre-strain geometries 2) Objects whose shape may be approximated by ellipses or polygons 3) Collections of objects whose spacial arrangement can be used to determine strain
	Category 1 includes fossils and other objects of known unstrained geometry to which equations of finite strain can be applied (e.g., Ramsay, 1967; Ramsay and Huber, 1983). These techniques are useful for specific locations or samples (e.g., Wellman, 1966; Waldon, 1988), but are less broadly applicable than the other two. EllipseFit implements an analytical Wellman method (Vollmer, 2011), and a method where multiple line stretches (as from folds and boudins) are known (Chapter 4). Category 2 includes samples such as sandstones and conglomerates, as well as collections of irregular clasts or fossils (Mulchrone and Choudhury, 2004), so these techniques are very broadly applicable. EllipseFit includes numerous procedures to collect and analyze this type of data (Chapters 5). Category 3 includes Fry (Fry, 1979) and nearest neighbor (Ramsay, 1967) methods, EllipseFit includes numerous procedures related to these (Chapter 3).
	The following chapters discuss techniques of strain analysis that are implemented in EllipseFit in terms of the type of data collected: points, lines, ellipses, and polygons. Points are the simplest type of data collected, however, as discussed in Chapter 3, Strain from Points, it can be difficult to objectively extract strain from point distributions. The analysis of line data depends on the known initial lengths of, or angles between, lines, and has important applications for some data as discussed in Chapter 4, Strain from Lines.
	Chapter 5, Strain from Ellipses and Polygons, covers ellipse data, which is collected assuming that particles, such as sand grains, initially approximated a collection of random spheres or ellipsoids. It turns out, however, that ellipse data is a subcategory of polygon data. An important mathematical proof (Mulchrone and Choudhury, 2004) shows that all particles, of any shape, that can be assumed to have been initially randomly oriented, can be used to calculate strain. This allows numerous geological objects to be used for strain analysis using objective calculations developed for ellipse analysis.
	Chapter 6, Ellipse Data Plots covers graphical techniques for two-dimensional strain plots, including Rf ϕ plots and polar Elliott plots, which are types of hyperboloidal projections. Hyperboloidal projections are analogous to spherical projections, such as the stereographic and equal-area projections that are used to create stereonets and Schmidt nets respectively, familiar to students of structural geology.
	Chapter 7, Mean Ellipse Calculation, discusses the calculation of a mean ellipse from a sample of ellipses. As discussed in Chapter 5, these calculations apply to polygons as well as ellipses, as the use of polygon moment equivalent it ellipses removes the requirement that particles were initially elliptical.
	The techniques mentioned thus far are related to two-dimensional strain analysis. Chapter 8, Ellipsoid Calculation, covers the more complex steps involved in determining three-dimensional strain ellipsoids from oriented sections for which the two-dimensional strain ellipse has been determined. Chapter 9, Ellipsoid Plots, covers strain plots used to display this type of data, Flinn and Nadia plots.
	Chapter 10, Data Transformation discuses methods for transforming data sets, including unstraining or retrodeforming data sets and images to their pre-deformation state. Chapter 11, Data Synthesis, covers data synthesis for making artificial samples from random populations. Chapter 12, Image Analysis discusses image analysis techniques, including filtering and edge finding, that can aid in highlighting particle edges prior to digitizing.
	It is essential to be aware of the assumptions involved in strain analysis. Refer to the referenced texts for a complete discussion. An important consideration is whether the particles, such as fossils or clasts, record the same deformation as the rock. In general, this means whether there was a viscosity contrast between the particles and the matrix that encloses them. This is discussed briefly in Chapter 3.
	A second problem to consider is whether there was an initial preferred orientation of the particles, this can be related to an initial sedimentary fabric, or compaction. Unimodal, or orthogonal, sedimentary fabrics and compaction essentially apply a “deformation” that is indistinguishable from a tectonic deformation without additional information. Detection of initial fabrics is discussed briefly in Chapter 7. Similarly, volume change is difficult to quantify, and strain is generally calculated with volume equivalent to an initial unit sphere.
	This User Manual is written in a tutorial fashion, in order to become acquainted with the program, it is a good idea to work through the examples provided. This User Manual is also not yet finished, it is a work in progress.
	3. Strain from Points
	It is common in nature for objects to be distributed randomly, but with some minimum cutoff distance between them. A random distribution in space follows a Poisson distribution (see, for example, Davis, 1986), essentially a distribution gotten by throwing pingpong balls randomly into an empty room. However, the centers of the pingpong balls can never touch, giving a cutoff distance of twice the radius of the balls.
	This distribution is called a truncated Poisson distribution (e.g., Shana and Xiao, 2011), or an anticlustered distibution (e.g., Mulchrone, 2013). Examples of this type of data include the centers of clasts in many sedimentary rocks such as sandstones and conglomerates. The centers of phenocrysts in igneous rocks, where nucleation of new crystals is prevented in proximity to existing crystals due to the chemical gradient, is another example. Note that if the particles have a different viscosity than the enclosing matrix, even if they are perfectly rigid, it is possible to get an estimate of the strain of the rock. Thus it is possible to extract different information than by an analysis of the particle shapes.
	The basic idea for methods utilizing point distributions (e.g., Ramsay and Huber, 1983) is that the distance between the initial object centers is the same in all directions, and after a deformation the particles are closer in some directions and further in others. This new distribution will be elliptical in two dimensions, or ellipsoidal in three-dimensions.
	Two general methods have been proposed for analyzing this type of data, a nearest neighbor approach (Ramsay, 1967; Ramsay and Huber, 1983), and an all object separation approach (Fry, 1979), commonly referred to as the Fry method. The latter, initially graphical approach, has many variations, one of the most common is the normalized Fry method (Erslev, 1988; Erslev and Ge, 1990). It is important to note that the normalized Fry method requires the particle shape (as an ellipse), and therefore the distinction between Category 2 and Category 3 data (Chapter 2) becomes blurred, or lost. If it can be assumed that the strain of the particles reflects the strain of the rock, then it is preferable to use the Category 2 methods as discussed in Chapter 5.
	The nearest neighbor approach (Section 3.3) has been enabled computationally by the availability of Delaunay triangulation algorithms (e.g., Preparata and Shamos, 1985). This approach was initially used in EllipseFit 1 (Vollmer, 1989), and has been developed extensively by Mulchrone (Mulchrone, 2003; Mulchrone, 2013).
	A difficult problem in point data analysis is to determine the strain ellipse from the central void. The enhanced normalized Fry method (Erslev and Ge, 1990) was developed to solve this, but requires the particle ellipse, and also a subjective parameter, the selection factor (Section 3.2). As discussed above, this blurs the distinction between Category 2 and 3 data. A number of solutions to this problem using only point data (Category 3) exist (e.g., Lisle, 2010; Shan and Xiao, 2011; Waldron and Wallace, 2011; Mulchrone, 2013). Currently EllipseFit implements the algorithm of Shan and Xiao (2011), discussed in Section 3.4.
	3.1 Fry Analysis

	A Fry analysis (Fry, 1979) is an important and widely used technique for analyzing this type of data, and there is an extensive literature on it and its variations (e.g., Hanna and Fry, 1979; Crespi, 1986; Onasch, 1986; Erslev, 1988; Erslev and Ge, 1990; Dunne, Onasch, and Williams, 1990; McNaught, 1994; McNaught, 2002; Shan and Xiao, 2011; Waldron and Wallace, 2011; Mulchrone, 2013).
	A Fry analysis can be simply done with two pieces of tracing paper, by tracing all of the particle centers on one sheet, then drawing a center point on a second sheet overlain on the first, and then sequentially moving the center point to each point and trace each point. For n initial points, this generates:
	nf = n! / (2 * (n - 2)!)
	points, which is a lot of points to draw by hand. To illustrate the use of the method in EllipseFit, start EllipseFit and open the image file (File > Open Image):
	E2 - Ramsay and Huber 1983 (large).jpg
	Use the Zoom In and Zoom Out tools to enlarge the image, and click on one particle center. The Data Window will display a highlighted line of data. Before continuing, open the Fry plot (Analyze > Fry Plot), as shown in Figure 2.
	Continue digitizing point centers, you should ideally work out from one point digitizing adjacent points keeping a roughly circular area. The Fry plot will start to develop as you digitize, with each new set of generated points highlighted (Figure 3).
	Use the Hand Tool (Digitize > Hand Tool) to scroll, and the Zoom Tool to zoom (Digitize > Zoom). You can also use the Command (Mac) or Control (Windows and Linux) + and – keys to zoom in and out. Holding down the Shift key allows scrolling with the cursor. Points can be deleted by using the Find Tool (Digitize > Find Tool) to highlight a point, and delete it using the Cut command (Edit > Cut). A point can also be deleted by selecting it in the Data Window and deleting it there. It is important to be objective, and you may wish to digitize all available points, however note that some particles may not meet the required assumptions. In particular, note that the centers of the particles in two-dimensions do not generally correspond to their three-dimensional centers, as they lie on an arbitrary plane cutting through the rock, so the assumption of of a uniform cutoff distance is weakened. This is discussed further in Section 3.2, Normalized Fry Analysis.
	It is also desirable to select approximately equal numbers of particles in all directions, so the point density is not biased by direction. This is one reason to maintain a uniform point density in a circular area while digitizing, and why having the interactive Fry plot open can assist in particle selection. This is discussed further in Section 3.3.
	If you wish to change the size of the digitized points, click the Preferences icon from which you can set most of the EllipseFit preferences. Note some selections have multiple pages, use the left and right arrow keys to go through them. You can preview the effect of preference changes before setting then with the OK button.
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