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Legal

License

Orient software and accompanying documentation are Copyright © 1986-2016 Frederick W. Vollmer. 
They come with no warrantees or guarantees of any kind. The software is free and may be downloaded 
and used without cost, however the author retains all rights to the source, binary code and 
accompanying files. It may not be redistributed or posted online. It is requested that acknowledgment 
and citation be given for any usage that leads to publication.

This software and any related documentation are provided as is without warranty of any kind, either 
express or implied, including, without limitation, the implied warranties or merchantability, fitness for 
a particular purpose, or non-infringement. The entire risk arising out of use or performance of the 
software remains with you.  

Citation

Orient is the result of countless hours of work over three decades. It is released for free in the hope that 
it will be useful for scientific and educational purposes. Commercial institutions should contact the 
author with details of the intended use. In return for free use, any significant use of the software in 
analyzing data or preparing diagrams must be cited in publications, presentations, reports, or other 
works. One or more of the following should be cited as appropriate: 

Citation for the modified Kamb contouring method (automatic Kamb contouring on a sphere):

Vollmer, F.W., 1995. C program for automatic contouring of spherical orientation data using a modified
Kamb method: Computers & Geosciences, v. 21, p. 31-49.

Citation for the triangular orientation plot or automated structural domain analysis:

Vollmer, F.W., 1990. An application of eigenvalue methods to structural domain analysis. Geological 
Society of America Bulletin, v. 102, p. 786-791. 

Citation for use of the Orient software:

Vollmer, F.W., 2015. Orient 3: a new integrated software program for orientation data analysis, 
kinematic analysis, spherical projections, and Schmidt plots. Geological Society of America 
Abstracts with Programs, v. 47, n. 7, p. 49.

Citation for Orient 3 software:

Vollmer, F.W., 2016. Orient 3: Spherical projection and orientation data analysis software. 
www.frederickvollmer.com. 

Citation for the Orient 3 User Manual (this document):

Vollmer, F.W., 2016. Orient 3: Spherical projection and orientation data analysis software user manual 
www.frederickvollmer.com. 96 p.
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An acknowledgement such as, “I thank Frederick W. Vollmer for the use of his Orient software”,  
“Frederick W. Vollmer's Orient software was used to prepare figures”, or even “Orient was used to 
prepare figures”, is greatly appreciated.

Registration

Please consider registering the software, registration is free. This helps determine usage, and justify the 
time spent in it's upkeep. To register, send an email to vollmerf@gmail.com with your user name, 
affiliation, and usage. You will not be placed on any mailing list or contacted again, other than my 
response with a thank you. For example, send me an email with something like:

User: Dr. Frederick Vollmer
Affiliation: SUNY New Paltz, Geology Department
Usage: Research on joint orientation analysis, Catskill Mountains, NY; fault kinematics in 

the Hudson Valley fold and thrust belt. Teaching an undergraduate structural
geology course with approximately 35 students per year.

If you are specific about the type of project, this can help me in developing future releases. If you are 
using Orient in a teaching environment, I am interested to know the course and approximate number of 
students. 
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Installation
Orient is compiled, tested, and debugged on Macintosh OS X, Windows, and Linux Ubuntu. Macintosh
OS X 10.5 to 10.11, Windows XP, 7 to 10, and Linux distributions should all run without problem. 

On Macintosh OS X, double click the disk image file (.dmg), and drag the Orient application on to the 
Applications folder icon, or to any other desired location. If you get the App Can’t Be Opened message
when double clicking on the Orient icon, right-click on the icon and choose Open from the popup 
menu.

Gatekeeper in OS X 10.7 and up must be set to allow applications other than from the Mac App Store 
to be opened. To do so, open the System Preferences and the Security & Privacy option. Under 
General select Allow apps downloaded from: Anywhere. 

On Windows, unzip the zip file (.zip) using the Extract All option, and drag the Orient application 
(Orient.exe) to any desired location. Do not try to run the Orient application folder from inside the zip 
file, this is the most common installation problem. 

On Linux unpack the gzip file (.tgz), and copy the Orient application (orient) to any desired location.   

The Example Data folder should also be copied for use in the tutorials. After installing a new version, 
you may wish to reset the preferences using the Restore Defaults command in the Help menu. This will
clear any options that may have changed and set them to default values. The preferences are stored in 
the file Orient3.xml, which is located in the folder Orient in your operating system's application 
preferences folder. To deinstall simply delete the Orient application folder, and optionally delete the 
preference folder. No other files are installed on your computer. No administrative permissions are 
required to install Orient, and it is possible to keep a copy on a thumb drive to run on any computer. 
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1. Introduction

1.1 Overview

Orient is a fast, professional, easy to use spherical projection and directional data analysis program. In 
1986 Orient implemented modified Kamb contouring (automatic contouring on the sphere, Figure 1.1), 
triangular orientation plots, orientation fields, and automated structural domain analysis (Vollmer, 
1988, 1989,  1990, 1993, 1995). Orient 3 brings a new level of accuracy and speed, with many new 
tools, including interactive data analysis, coordinate conversions, digitizing, and file integration with 
applications such as Microsoft Excel, LibreOffice, Adobe Illustrator, InkScape, CorelDRAW, and 
Google Earth.

Orient is for plotting and analyzing directional data, data that can be described by the orientation of an 
axis or vector in space or, equivalently, by a position on a sphere or circle. Examples of data that are 
represented by unit vectors (directed) or axes (undirected) include geologic bedding planes, fault 
planes, fault slip directions, fold axes, paleomagnetic vectors, glacial striations, current flow directions,
crystallographic axes, earthquake epicenters, cosmic ray arrival directions, comet orbital planes, 
positions of galaxies, whale migration paths, and the locations of objects on the Earth. Orient has been 
written to apply to a wide variety data types, however many examples come from structural geology, 
which requires extensive manipulation and analysis of directional data. 

Spherical projections (Figure 1.1) are used to display three dimensional directional data by projecting 
the surface of a sphere, or hemisphere, onto a plane. Lines and planes in space are considered to pass 
through the center of a unit sphere, so lines are represented by two diametrically opposed piercing 
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Figure 1.1 Lower hemisphere equal-area 
modified Kamb contour plot of ice 
crystallographic axes with contours at 10% 
density, an example of undirected axial data 
(data from Kamb, 1959). 

Figure 1.2 Circular frequency polygon plot of
the means of two joint sets from each of 24 
counties in central New York, plotted as 
undirected strikes (data from Parker, 1942).



points. Planes are represented by the great circle generated by their intersection with the sphere or, 
more compactly, by their normal.

Spherical projections include equal-area (used for creating Schmidt nets), stereographic (used for 
creating Wulff nets or stereonets), and orthographic projections, these can be plotted on either upper or 
lower hemispheres. Point distributions are analyzed by contouring and by computing eigenvectors of 
undirected data from orientation matrixes, or vector means of directed data. Figure 1.3 is an example of
directed data plotted on both upper and lower hemispheres. Data sets and projections can be rotated 
about any axis in space, or to principal axes. For two-dimensional data, such as wind or current 
directions, circular plots and circular histograms, including equal-area and frequency polygon 
diagrams, can be prepared (Figure 1.2).

Data can be input as spherical coordinates, longitude and latitude, azimuth and altitude, declination and
inclination, trend and plunge, strike and dip, or other measurements. Orient does kinematic analysis of 
fault data, which is represented by a plane and the direction of slip within that plane, by generating P 
and T kinematic axes, tangent line diagrams (Figure 1.4), and beachball plots (Figure 1.5).

Spherical projections represent data directions, but not spacial locations. Orient therefore includes 
orientation maps to analyze spacial distributions of orientation data, such as the location of domains of 
cylindrical folding in polydeformed regions (Figures 1.6 and 1.7). Orient can plot the distribution of 
data globally (Figure 1.8), and integrates with internet maps, like Google Maps, and with Google Earth.

Additional features include statistical confidence cones, bootstrap analysis, plotting of conical data, 
small circle fitting with confidence regions, and projection and data rotations. Figure 1.9, for example, 
is a projection of poles to bedding in graywacke rotated to display fold a cylindrical axis.
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Figure 1.3 Schmidt plot of directed data, magnetic remanence directions from 
Precambrian volcanics, with modified Kamb contours at 20% density (data from 
Schmidt and Embleton, 1985, in Fisher, et al., 1987). Projection on left is inverted 
to display upward directed data.
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Figure 1.4 Lower hemisphere equal-area slip
tangent plot of 38 normal faults from Crete, 
Greece. Each data point is defined by both a 
plane and a directed line (data from Angilier, 
1979).

Figure 1.5 Lower hemisphere equal-area 
beachball diagram of data in Figure 1.4 
showing quadrants of P shortening (red) and 
T extension (cyan) kinematic axes.

Figure 1.6 An axial orientation field of 
eigenfoliation dip lines derived from 625 foliation
planes, Dovrefjell mountains, Norway (data from 
Vollmer, 1990).

Figure 1.7 Triangular orientation diagram (Point 
Girdle Random) diagram showing the variations in
orientation data symmetry and scatter among 
structural domains defined from the data in Figure 
1.6.



1.2 Tutorial 1 – Quick Start

Open the Orient application to display the data entry spreadsheet, the main data display area (Figure 
1.9). By default, columns for ID, Station, Strike, Dip, Trend, and Plunge are displayed. The ID is an 
integer that should be unique for each measurement, Station is any alphanumeric string to identify the 
measurement (to see all available columns, select the menu command View Data Columns, these 
additional columns will be covered later). Measurements for planes should be entered in the strike and 
dip columns, and lines in the trend and plunge columns (these can be changed, for example, if you 
prefer dip direction over strike). 

Use the mouse to examine the icons in the toolbar, from left to right these are Open, Save As, 

Spherical Projection, Circular Histogram, PGR Plot, Orientation Map, and Preferences. Most of the 
controls in Orient have tooltips, or help hints displayed when the mouse is over the control. Click on 
the Spherical Projection icon to display the default Schmidt net (Figure 1.10). The toolbar icons in the 
spherical projection window are Export Image As, Find, Zoom In, Zoom Out, Zoom Fit, and 
Preferences. Export Image As will save the image to a graphics file in various raster (Adobe Photoshop
and GIMP compatible) and vector (Adobe Illustrator and Inkscape compatible).

Begin entering numbers into the strike and dip columns, and the spherical projection will automatically 
update to display them. The ID number is automatically incremented, although a different number can 
be entered. To identify individual measurements, click on the Find icon in the spherical projection 
window. In this mode any selected data point will be highlighted in the other window, a colored bar in 
the spreadsheet, and a selection icon in the spherical projection window (Figure 1.11).
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Figure 1.8 Upper hemisphere equal-area 
projection of 14,229 earthquake epicenters 
(1980-1990), an example of directed data 
plotted by latitude and longitude (data from 
NOAA). 

Figure 1.9 Lower hemisphere orthographic 
projection of 56 poles to bedding in 
graywacke, Albany County, New York 
rotated to display fold axis (data from 
Vollmer, 1981).



To only display data items selected in the spreadsheet, turn on the Plot Selected option in the Graph 
menu. In this case only the selected data will be displayed on the spherical projection. Turn this off 
before continuing the tutorial.

Next, open the Preferences dialog by clicking its icon. Select the Spherical Projection option from the 
pulldown menu, and the Data Symbols panel. Check the Great Circle checkbox (Figure 1.12), and 
press OK. The projection will update to show great circle arcs for each of the data points (Figure 1.13). 
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Figure 1.10 The Orient Data window with the spreadsheet for data entry and display, and a Spherical Projection 
displaying the default Schmidt net.

Figure 1.11 Display of data in spreadsheet and spherical projection. The data point can be selected in either 
window, and will be highlighted in the other window.



A common calculation required for geologic data analysis is to determine the intersection between two 
planes, such as bedding and cleavage, or of multiple bedding planes to find a fold axis. To do this in 
Orient, select the planes, the result is displayed in the status bar and plotted on the spherical projection. 
The result is displayed in the status bar as the calculated maximum and minimum eigenvectors, and 
also displayed on the spherical projection (Figure 1.14). The maximum (Max) is a mean value, and the 
minimum (Min) is the intersection (see Section 4.7 for details).

Finally, click on the Circular Histogram icon to display a circular histogram, or rose diagram, of the 
data (Figure 1.15). By default the data is displayed as undirected data, and planes are displayed by their
strikes.
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Figure 1.12 The Orient Preferences dialog showing 
spherical projection data symbol options.

Figure 1.13 The projection after 
checking  the Great circle option.



1.3 Graphics Output

Graphics output of plots and diagrams is to bitmap (raster) and vector graphics files (Table 1.1). Bitmap
files are compatible with photo editing programs such as Adobe Photoshop and GNU Image 
Manipulation Program (GIMP, free), and can be imported into most word processing programs. 
Formats include Portable Networks Graphics (png), Windows Bitmap (bmp), Tagged Image File 
Format (tiff or tif) and Joint Photographic Experts Group (jpeg or jpg). The default format is png, is a 
widely supported optimally compressed non-lossy format. bmp and tiff files are also non-lossy and 
widely supported. The jpg file format was designed mainly for photographic images, and is less 
suitable for plots and illustrations.

Vector graphics files allow editing in programs such as Adobe Illustrator, InkScape (free), and 
Computer Aided Design (CAD) programs such as AutoDesk AutoCAD and QCAD (free). Orient 
supports Scaled Vector Graphics (SVG), Encapsulated PostScript (eps), and AutoCAD Drawing 
Exchange (dxf) formats.

The default SVG format is an open source vector graphics format that is widely supported, including 
by Adobe Illustrator, InkScape, CorelDRAW, and most web browsers. Some versions of Adobe 
Illustrator, however, contain bugs that prevent opening svg files. For example, on Macintosh, Illustrator
5 can import svg files, but Illustrator 6 can not. On Windows, Illustrator 5 can not open svg files, but 
Illustrator 6 can.  As a work around, try opening the svg in another program, such as InkScape or 
Macintosh Preview, and saving it in another format, such as pdf. Alternatively, save the plot as an eps 
file which Illustrator should be able to open. 

SVG graphics are scaled using the pixel resolution in dots per inch (dpi) set in the Page Size dialog, 
and can easily be rescaled in a vector graphics program. InkScape uses a default of 90 dpi, so InkScape 
users may wish to use that value. 
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Figure 1.15 Circular histogram of the 
data displayed in Figure 1.7, showing the
strikes of the data. 

Figure 1.14 The projection after 
selecting all data points, the minimum 
(blue) and maximum (red) eigenvectors 
are displayed.



The vector graphics file formats vary in their support of drawing features. SVG is the most complete, 
and Orient saves plot elements as nested groups. SVG does not support layers, but grouped elements 
can be moved to layers once opened in a vector graphics editing program. eps format is a widely 
supported PostScript vector format, but does not support layers, groups, or transparency. The dxf 
format does support layers, but not transparency, only simple polygon fills are supported, and line 
styles, text, and colors may vary from other formats. 

SInkScape uses a 90 dpi 

Note that none of the vector file formats supports bitmaps, such as the gradient contour fills in Orient. 
To use these in a vector graphics editing program, save the background only, turning off data, label, and
net display, and save as a bitmap file. The resulting background can be imported into a vector graphics 
editing program with the vector graphics overlain.

Format Extension Format Comment

Portable Networks Graphics png Bitmap Best choice for bitmap output

Tagged Image File Format tiff Bitmap Good choice

Windows Bitmap bmp Bitmap Good choice

Joint Photographic Experts Group jpg Bitmap Poor choice for bitmap output, lossy

Scaled Vector Graphics svg Vector Best choice for vector output

Encapsulated PostScript eps Vector Good choice, Adobe format

AutoCAD Drawing Exchange dxf Vector Standard for CAD software

Table 1.1 Summary of graphics output formats supported by Orient.
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2. Data and Coordinate Systems

2.1 Introduction

This chapter defines the data types that Orient can analyze, including specification of the angles and 
coordinates used to describe them. There are numerous ways of describing a direction, including 
latitude, longitude, trend, inclination, strike, and others. There are also many possible coordinate 
reference frames, the basics are described here with more detail for those needing it in Section 4.8.

The main goal of this chapter, however, is to get the user quickly started by explaining how to enter 
data. Often it is simplest to enter the data directly into Orient's spreadsheet, however Orient can read 
and write files compatible with spreadsheet software such as Microsoft Excel and LibreOffice, and, for 
many workers, this is a better option. Finally, Section 2.4 explains how data can be digitized from 
scanned images of spherical projections or maps. 

2.2 Data Types

The orientations of lines, axes, and planes in two or three dimensional space are a common data type in
the earth sciences, and are referred to as orientation data (Watson, 1966; Howarth, 1999; Borradaile, 
2003). However, directional data and directional statistics (Mardia, 1972; Mardia and Jupp, 2000), 
more specifically refer to lines, axes, and planes, while orientation statistics deals with the full spacial 
orientations of rigid objects in space, including orthonormal frames such as foliation-lineation pairs 
(Downs, 1972; Mardia and Jupp, 2000). 

Directional data are either unit vectors, directed data, or unit axes, axial or undirected data. Current 
flow directions, for example, are directed, while fold axes are undirected. Plotting, contouring, and 
statistical analysis of these data types is different. Geometrically, data represents either lines or planes. 
On spherical projections planes and lines are considered to pass though the center of a unit sphere. 
Planes are represented by either their great circle, the intersection of the plane with the unit sphere, or 
by their normal (often referred to as the plane's pole).

Unit vectors or axes in three dimensions can be specified by their coordinates on the surface of the unit 
sphere, or direction cosines. However, it is more common to specify two independent angles, a 
horizontal angle (such as strike, trend, or azimuth) and a vertical angle (such as dip, plunge or 
inclination). Two dimensional data require a horizontal angle only. Available angular measures and 
their definitions are listed in Table 1, and discussed in Section 2.2. Orient has separate columns for 
lines and for planes, this allows data that contains both, such as kinematic orientation data (Chapter 5), 
to be entered as well. Unused columns can be hidden if desired by opening the Data Columns Dialog 
from the View Menu.

Angle units can be specified as either degrees (0 to 360 degrees), gradians (0 to 400 gradians), or 
radians (0 to 2π radians). Orient stores all numbers internally as radians, which are transparently 
converted to user units. This is a global preference that sets how angles are read from files and user 
input, and stored in files. There is no mechanism to determine this from file input, so this should only 
be done if all files share the same format, or to convert files from one format to another. Degrees is the 
default value, and will not normally need to be changed.
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2.3 Coordinate Systems

Orient is designed to be used with all types of directional measurements and coordinate systems, and 
converts to and from user coordinates for data entry and output. The user does not normally need to be 
concerned about the underlying coordinate system, except in the case of rotations or selecting different 
geographic coordinates (Section 4.8). Orient uses a standard right-handed spherical coordinate system 
defined with default axes X, Y, Z = Right, Top, Up. In geologic usage these normally correspond to 
East, North, Up, which conforms to map coordinate systems using Easting, Northing, Elevation. 
Section 4.8 explains how the default coordinates can be changed to any other orientation, such as 
global geographic (Orient has 13 standard coordinate systems, which can be modified by rotations 
about any axis).

Spherical coordinates are specified by two angles, θ (theta) and ϕ (phi). The standard mathematical 
definitions are that θ is the longitude, or the counterclockwise angle from X in the XY plane, and that ϕ
is the colatitude, the angle from Z. However, there are numerous ways to specify the same information 
with two angles, typically specified by the scientific discipline, such as geology, geography, or 
astronomy (e.g., Fisher et al, 1987; Mardia and Jupp, 2000). Planes are represented by their normal, or 
pole. Alternatively, coordinates can be specified by three direction cosines in this coordinate system, 
which are the coordinates of points on a unit sphere. In Orient the user can specify θ and ϕ for lines and
planes according to their data or discipline (Table 2.1). 

Geographic data are generally given using longitude as the horizontal angle, the vertical angle is 
commonly latitude or colatitude, azimuth and altitude are used in astronomy. Geologic data, however, 
are typically specified using azimuths for horizontal angles, measured clockwise from North (Y),  and 
dips or plunges for vertical angles, measured down from horizontal (the XY plane). Geologic angles are
typically strike and dip for planes, or trend and plunge for lines. Orient supports all common 
conventions (Table 2.1), and converts among them.

To convert between units or to set the default units for data entry, open the Data Orientation Units 
Dialog from the Data Menu. This will set the data units entered in the spreadsheet, and will convert any
preexisting values to the new format. For example, a common conversion is from strike and dip, to dip 
and dip direction. The data will be saved in the new format. Note that data files contain the format, 
opening a saved file will always have the format as saved.

Due to the standard use of geographic locations, typically from GPS (Global Positioning System) 
positioning, of data points in geology, Orient requires a distinction between two usages of latitude and 
longitude for data input. A geologist typically records data locations expressed as Cartesian 
coordinates, such as UTM (Universal Transverse Mercator), or as latitude and longitude pairs, as well 
as collecting directional data at that location. Therefore it is necessary to determine whether a latitude, 
longitude pair is meant as the location of a data point, or if it is the data point itself. The convention 
adopted here is that latitude, longitude (or lat, long) refer to a data point location, and that latitude 
sphere, longitude sphere (or lats, longs) refer to the data point to be plotted on a spherical projection.
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Column Header Abbreviation Notes

Plane θ Horizontal angle of plane

Strike Clockwise from North (Y), dip is to right along strike

Strike left strikel Clockwise from North (Y), dip is to left along strike

Dip direction dipdir Azimuth of dip line

Plane ϕ Vertical angle of plane

Dip Angle from XY plane down toward -Z

Line θ Horizontal angle of line

Azimuth az Clockwise angle from North (Y)

Declination dec Equal to azimuth

Longitude Sphere longs Counterclockwise angle from X

Trend Equal to azimuth

Line ϕ Vertical angle of line

Altitude alt Equal to latitude

Colatitude colat Angle from Z down toward XY plane

Inclination inc Angle from XY plane down toward -Z

Latitude Sphere lats Angle from XY plane up toward Z

Nadir Angle from -Z up toward XY plane

Plunge Equal to inclination

Zenith Equal to colatitude

Table 2.1 Column headers used to specify data formats in Orient. The header or its abbreviation is used in data 
files to identify a column of data. A plane requires two headers, such as Strike and Dip. A line also requires two 
headers, such as Trend and Plunge.

There are a number of conventions for strike and dip, including two contradictory ones both called the 
right-hand rule (e.g., Ragan, 2009). A distinction must be made, so by default, Orient uses the 
convention that the dip is to the right looking along the strike (e.g., Pollard and Fletcher, 2005; Twiss 
and Moores, 2007). This can be remembered as when the fingers of the right hand, placed on the top of
the plane, point down dip, the thumb points in the strike direction..

A second convention, where the dip is to the left, and the thumb of the right hand points down the dip 
(e.g., Barnes, 1995), is referred to in Orient as strike left (or strikel). This convention can be selected 
using the Data Orientation Units command. A third convention, using a dip octant (N, NE, E, SE, etc.) 
is automatically converted to one of the above as described in Section 2.4. Finally, dip and dip direction
are another common way of giving the orientation of a plane, which is also supported. 

2.4 Data Entry

Each data point must include a pair of angles specifying its orientation in space. The first angle is 
measured in a horizontal plane (θ), and the second in a vertical plane (ϕ). For typical geologic data, 
these are strike and dip for planes, and trend and plunge for lines. However, all common units are 
supported (Table 2.1). Two dimensional data require horizontal angles only.

Before entering data, select the desired data format using the Data Orientation Units command. You 
may also wish to hide or show appropriate columns using the View Data Columns command. Separate 
columns are used for planes and for lines, so make sure the required columns are visible. The Type 
column can contain any alphanumeric identifier, for example S0 and S1 are often used in geology to 
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designate bedding and cleavage. This is optional, but is required if multiple data types are entered in a 
single file. All settings, such as symbol sizes and color, are saved for each type. Additional data 
attributes include station identifiers, location coordinates, domains, and comments (Table 2.1).

Orient does several automatic data conversions. If data is entered as a bearing with compass quadrants 
it is automatically converted to a numerical azimuth. Bearings are given as degrees east or west of 
north or south, for example, N30W will be converted to 330. A conversion is also done for planes in 
strike and dip, or strike left and dip, formats if a dip octant (N, NE, E, SE, S, SW, W, or NW) is given.  
The strike (or strike left) will be corrected if necessary. For example a strike, dip pair entered as 10, 
30W will be converted to 190, 30.

Normally only one plane or line is entered on a row, however kinematic analysis requires the entry of 
plane-line pairs, which introduces some complexity. Data entry for this type of data is covered in 
Section 5.2.

Each data point may be individually weighted by entering a value into the Weight column. The default 
weight is 1, enter 0 to discount the point, or a positive value to increase its weight, This can be used, for
example, to weight joint or fault data by exposed length or surface area. See Section 7.4 for an example
of weighting applied to fitting a small circle. Weighting applies to all calculations except bootstrap 
confidence cones, which require the resampling of equally weighted points. 

Planes with a dip of zero (less than 1E-9 radians), on either hemisphere, plot as a full circle instead of 
an arc. If they are obscured by the net frame, increase the stroke width, or decrease the opacity of the 
Frame (e.g., to 50%). Undirected lines with a plunge of zero (less than 1E-9 radians) on either 
hemisphere plot as two diametrically opposed symbols. Similarly, if represented by a ray, the ray will 
be plotted as a diameter instead of a radius. This option can be turned on or off with the Preferences 

Dialog Spherical Projection Mirror checkbox.

2.5 Hidden Data Display

Directed data (vectors) intersect the sphere at only one point, which may occur in either hemisphere. 
Consequently, some of the data point symbols may be hidden from view. One option is to plot both 
hemispheres separately (e.g., Figure 1.3), however it may also be useful to plot the data points on the 
hidden hemisphere on the same plot using a different symbol. In the Preferences dialog Spherical 

Projection pane, the Directed option can be selected to plot hidden contours, confidence cones, and 
symbols at 10% to 90% opacity, so they appear semitransparent (e.g., Figure 1.9, Figure 2.1). 
Alternatively, symbols on the hidden hemisphere may be plotted as Unfilled. 

Undirected data (axes) intersect the sphere at two diametrically opposed points, by convention usually 
only one is plotted. For example, the one in the lower hemisphere is normally plotted in structural 
geology, and the one in the upper hemisphere in mineralogy. However, it is sometimes useful to plot 
both symbols on the same plot, which can be dome using the Undirected option, which similarly allows
plotting of hidden contours, confidence cones, and symbols.

When learning the properties of spherical projections, it is instructive to plot one or more data points 
with both the Symbol and Ray options on, and Directed and Undirected set to 50% opacity. With a 
spherical projection displayed, use the Rotate Projection command discussed in Section 5.4 to 
sequentially rotate the projection until the points change hemispheres. Try this for both undirected and 
directed data, by using the Preferences dialog Symbols Pane Directed checkbox. See Section 5.6 for a 
Tutorial on this method.
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2.6 Linking and Line-Plane Pairs

This section discusses the construction of plane intersections using linking, entering line-plane pairs, 
and constructing line-plane pairs using linking. These are commonly used in constructing bedding-
cleavage intersections, and for kinematic analysis (Chapter 8). 

A common construction on a Schmidt net is to determine the intersection of two planes, for example 
the intersection of bedding (S0) and cleavage (S1) planes is used as a predictor of an associated fold 
axis. The intersection (S0^S1) can be determined in Orient either by using the mouse to locate the 
intersection on a Schmidt plot of the data, or by selecting the two rows in the spreadsheet window. In 
both cases the intersection (or minimum) is displayed in the window's status bar. 

To plot a symbol at the intersection, and to allow the calculation of the data statistics, enter the ID of S1
in the Link column as shown in Table 2.2. The resulting Schmidt plot is shown in Figure 2.2. The 
intersection will now show up as a data type (S0^S1) for display and for calculation of statistics.

ID Link Strike Dip Type

1 2 20.00 40.00 S0

2 40.00 80.00 S1

Table 2.2 Example data for calculation and display of a bedding-cleavage intersection (Figure 2.2).
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Figure 2.1 Schmidt plot showing example of 
hidden data display, the upper hemisphere 
data is plotted as 30% opaque. Magnetic 
remanence data as in Figure 1.3, with 
modified Kamb contours at multiples of 
uniform density (MUD).



The Calculate Line command is used to determine the orientation of a line in a plane, given its trend or 
rake (pitch), as well as to remove errors from overconstrained line plane pairs by orthonormalizing 
them to an orthogonal frame. See Chapter 8 for a disscusion of orthonormalizing kinematic data.

In certain situations it is useful to measure the rake (pitch) of a lineation in a plane, instead of its trend 
and plunge. Alternately, only the trend may be measured. The rake is the angle measured in the plane 
clockwise from the plane's strike, a positive angle between 0° (sinistral) and 180° (dextral) indicates 
there is a downward (normal slip) component, a negative angle (or between 180° and 360°) indicates an
upward (reverse slip) component. 

Table 2.3 shows fault data entered as the strike and dip of a slickenside plane, and the rake of the  
slickenside lineation. After using the Calculate Lines from Rake command, the data appears as in Table
2.4, and plots on a Schmidt plot as in Figure 2.3.

ID Link Strike Dip Trend Plunge Sense Rake Error Type

1 0.00 50.00 60.00 F

Table 2.3 Fault plane (slickenside) and lineation entered as rake. 

ID Link Strike Dip Trend Plunge Sense Rake Error Type

1 0.00 50.00 48.07 41.56 60.00 0.00 F

Table 2.4 Fault plane (slickenside) and lineation entered as rake, after using the Calculate Line from Rake 
command. The data is plotted in Figure 2.3.
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Figure 2.2 Schmidt plot of bedding (S0, red) 
and cleavage (S1, blue) with constructed 
bedding-cleavage intersection (S0^S1, 
yellow).



Minor structures associated with a fault or shear zone can often be used to construct a slip direction. 
Fault slip direction can be determined, for example, from minor veins, fractures, cleavage, or foliated 
gouge. Similarly, the asymmetry of SC and C' shear band fabrics can be used as shear sense indicators 
in mylonitic rocks. These can be subdivided into acute and obtuse angle shear sense indicators, 
depending on the angle subtended from the minor structure to the shear plane. SC fabrics, fault-related 
cleavage, and similar strain-induced structures are acute indicators. Fault-related veins, extension 
fractures, and C' shear bands are obtuse indicators.

As an example, Table 2.5 shows data from a fault (F) and an associated extensional vein (V). The fault 
data includes a link (Link = 2) to the vein data (ID = 2). Table 2.6 is the data after executing the 
Calculate Lines from Obtuse shear command. Figure 2.4 is the resulting Schmidt plot. 

ID Link Strike Dip Trend Plunge Sense Rake Error Type

1 2 0.00 50.00 F

2 10.00 80.00 V

Table 2.5 Data from fault plane and (F) associated vein (V). A link from the fault to the vein data is entered in 
the Link column. 
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Figure 2.3 Schmidt plot of fault plane (F, 
red) and lineation (yellow) constructed from 
rake, as shown in Table 2.4. Arrows are 
tangent lines showing hanging wall motion 
(see Chapter 8).



ID Link Strike Dip Trend Plunge Sense Rake Error Type

1 2 0.00 50.00 118.48 46.33 Normal 109.23 0.00 F

2 10.00 80.00 V

Table 2.6 Data from fault plane and (F) associated extension vein (V), after executing the Calculate Lines from 
Obtuse shear command. Figure 2.4 is the resulting Schmidt plot.

2.7 Spreadsheet Integration

Data entered into the Orient spreadsheet can be saved in several spreadsheet formats: tab separated 
values (tsv), comma separated values (csv), OpenDocument spreadsheet (ods), Microsoft Excel (xls), 
and Excel Open Office XLM (xlsx). These are all compatible with most spreadsheet programs, 
including Microsoft Excel and LibreOffice (Table 2.7).

Orient can also read all of these formats, allowing users to enter data files into Microsoft Excel, 
LibreOffice, or other spreadsheet software. The only requirements are that the data have a header row, 
consisting of headers listed in Tables 2.1 and 2.8 and that any initial comment lines start with two 
slashes (//). Table 2.9 gives a simple example, and Table 2.10 gives a more complete example. The 
simplest possible file would be a list of horizontal angles, such as trends or azimuths, for two 
dimensional analysis. Three dimensional analysis also requires vertical angles, such as dips or plunges.
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Figure 2.4 Schmidt plot of fault (F, red) and 
associated extension vein (V, blue) with 
constructed slip direction (yellow). Data is in 
Table 2.6. Arrows are tangent lines showing 
hanging wall motion (see Chapter 8).



Format Extension Comment

Excel XML Spreadsheet xlsx Microsoft Excel 2007 and later

Excel Spreadsheet xls Microsoft Excel pre-2007

OpenDocument XML Spreadsheet ods LibreOffice/OpenOffice, free open source software

Tab Separated Value tsv Simple text format with values separated by tabs

Comma Separated Value csv Simple text format with values separated by commas

Table 2.7 Summary of spreadsheet formats supported by Orient for opening and saving. 

Note that the Microsoft Excel worksheet naming convention is enforced to ensure cross-platform 
compatibility:

• The name must be unique within a single workbook.
• A worksheet name cannot exceed 31 characters.
• You can use all alphanumeric characters except the following:  \  / * ? : [ ]
• You can use spaces, underscores (_) and periods (.) word separators.

Currently Orient only opens the first worksheet in the file, and that worksheet must follow these 
naming restrictions. Although OpenDocument files (ods) are less restrictive, these worksheet naming 
conventions are required for Excel compatibility.

The included folder Example Data has numerous examples of compatible files. Open them in Excel or 
LibreOffice to examine them, they are used in the following tutorials.
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Column Header Abbreviation Notes

ID N Integer identification number for data point

Link Link to another data row by ID

Station Alphanumeric station identifier

Zone Alphanumeric zone, such as UTM grid zone

Easting East, X X or easting coordinate of data location

Northing North, Y Y or northing coordinate of data location

Elevation Z Elevation of data location

Latitude lat Latitude of data location (D°, D°M', or D°M'S”)

Longitude long Longitude of data location (D°, D°M', or D°M'S”)

Plane θ Horizontal angle of plane from Table 2.1

Plane ϕ Vertical angle of plane from Table 2.1

Line θ Horizontal angle of line from Table 2.1

Line ϕ Vertical angle of line from Table 2.1

Rake Rake of line in plane

Sense Kinematic movement sense, Normal or Reverse

Error Angular error of line in plane, read only

Alpha Half apex angle of cone

Weight Data point weight, default is 1

Type Alphanumeric data type, as S0 or S1

Label Alphanumeric label

Domain Integer identification number for domain

Comment Alphanumeric comment

Table 2.8 Column headers used to specify data attributes in Orient. The header or its abbreviation is used in data 
files to identify a column of data. See Table 2.1 for data angles.

Strike Dip

230 24

018 54

141 15

Table 2.9 Example of a simple data file as displayed in a spreadsheet, such as Microsoft Excel or LibreOffice, 
with strikes and dips of planes. See Table 2.1 and 2.8 for other possible column headers.
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// Example of an Orient 3 data file in a spreadsheet, this is a file comment, 2015-05-04

Easting Northing Strike Dip Trend Plunge Type Comment

8452.05 12885.05 230 24 S0 approximate

8456.03 12825.03 018 54 S0 overturned

8432.12 12922.30 141 15 S1 spaced

8466.08 12865.40 138 02 L S0/S1

8492.01 12872.00 140 09 L mineral

Table 2.10 Example of a more complex data file as displayed in a spreadsheet, such as Microsoft Excel or 
LibreOffice, with an initial file comment, data locations, multiple data types, and data comments. See Tables 2.1 
and 2.3 for other possible column headers.

While a number of data files formats are supported (Table 2.7), tab separated value (tsv) files are 
recommended for long term storage and archiving data. The format is a simple text file that can be read
by virtually any text editor, word processor, or spreadsheet program. While the comma separated value 
(csv) format is also simple, the fact that text often contains commas requires additional processing.

2.8 Project Files

Orient stores all system settings in an XML project file (extension oprx) that is by default stored in the 
Application Support folder for your system (e.g., on a Macintosh, it is in Users/yourname/Library 
Support/Orient). Most of the settings, for example the symbol styles and colors, are stored by Type, and
will remain in effect for any files that use that data type. 

It is also possible, however, to save the project file in another directory. The project file contains links 
to all the files in the project, as well as all of the settings. The data is not stored in the project file, and 
remains untouched in your spreadsheet files. When reopening the project file, if the data files are 
moved or renamed, Orient will report them missing. If so, simply reopen them. When a project is open,
the project name is prefaced to the file name in the caption of the spreadsheet data window.

The oprx project file is an XML (Extensible Markup Language) Unicode UTF-8 encoded file that 
conforms to the W3C XML 1.0 specification, a free open standard format widely used for data files 
(e.g., Microsoft Office, LibreOffice). It consists of ordered key-value pairs stored in recursively nested 
dictionaries. XML files are designed to be both human-readable and machine-readable, and can be 
viewed in text editors and internet browsers. 

2.9 Tutorial 2 –  Plotting Spreadsheet Data

Open a spreadsheet program, such as LibreOffice or Microsoft Excel, and enter the data shown in Table
2.5. Then save the file using a standard format (see Table 2.7). 
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// My data file

Strike Dip Trend Plunge Type

060 65 S0

10 45 S0

40 60 S0

310 60 S0

280 70 S0

90 40 FH

330 55 S1

Table 2.11 Example of a data file. Enter this into a spreadsheet such as LibreOffice or Microsoft Excel.

Open the file in Orient using the File Open command. Click on the Spherical Projection icon, to get a 
plot as in Figure 2.5. If you have previously modified settings, however, they will still be in effect. The 
Help Restore Defaults command can be used to reset all settings to default.

To prepare the plot for presentation, it is good to simplify it and focus on the data, so change some of 
the settings as follows. From the spherical projection window, press the Preferences icon. Under 
Spherical Projection in the Net pane, turn off both Net and Axes. Click on Preview to see the result. In 
the Labels pane, set the Increment to -90, Offset to 14, and Size to 12. 

Next, assign different colors to the data types. In the Symbols pane select data type S0 (bedding), click 
on the data symbol icon, and assign the Fill Color blue. Select data type S1 (cleavage) and assign its fill 
color to green, and FH (a fold hinge) yellow. Press Preview, and the plot should be as shown in Figure 
2.6.
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Figure 2.6 Equal-area scatter plot as in Figure 
2.5 after removing the Schmidt net, and 
assigning colors to the data symbols.

Figure 2.5 Lower hemisphere equal-area 
projection of data from Table 2.11.



Now add great circles to represent the planes. In the Symbols pane select data type S0 again and check 
the Great Circle checkbox. Then select data type S1, check the Great Circle checkbox, and set the 
Stroke Color to green (Figure 2.7). A plot of planes represented by their great circles is a β (beta) 
diagram. With a lot of data this type of diagram becomes crowded, and loses any statistical 
significance, but for a small number of points it can help with visualization. A plot with planes 
represented by their poles is a π (pi) diagram, or S-pole diagram, and is preferred over a β diagram as a
better statistical representation.

Finally, add the S0 maxima. In the Maxima pane select the S0 data type, and check Visible. For this plot
just add the Minimum Eigenvector, which gives us a best-fit fold axis. Uncheck the Symbol for both the
Maximum and Intermediate Eigenvectors. For the Minimum Eigenvector check the Symbol and Great 

Circle checkboxes, and set their colors to red (Figure 2.8). 

2.10 Digitizing Data

When digital data files or text listings of directional data are not available, data can be digitized from 
scanned images of spherical projections or maps. To digitize a spherical projection from a suitable 
source image, insure that the image is undistorted, that is circular, and that the north point is unrotated. 
An image editing program such as Adobe Photoshop or GIMP can remove distortion and rotate the 
image if necessary. 

Open the image in Orient using the File Open Image command, which will display the Digitizing 
window (Figure 2.9). Click on the Digitize icon to display the Digitize dialog (Figure 2.10). Select the 
correct options for the spherical projection, the projection options are stereographic, equal-area, or 
orthographic, in either upper- or lower-hemisphere (one hopes that the original author correctly 
specified these). Select the data type, line or plane, and press OK.

A prompt will ask for three points on the perimeter of the projection, after entering these, a circle will 
be drawn over the projection. If the circle is a reasonable fit, proceed to digitize the points, which will 
appear in the Data window spreadsheet. If not, the circle can be reinitialized, or distortion of the image 
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Figure 2.7 Equal-area plot as in Figure 2.2 
with planes represented as great circles.

Figure 2.8 Equal-area plot as in Figure 2.7 
with best-fit great circle and pole given by the 
minimum eigenvector of S0 (bedding).



may need to be removed. Spurious data points can be deleted in the spreadsheet as necessary. If 
digitizing needs to be interrupted, save the file and reopen the file and image later to resume. To change
data type, lines or planes, reopen the Digitize dialog, select the desired one, press enter, and continue 
digitizing.

Digitizing directional data from a map is similar. Make sure the image is undistorted, and that the X 
and Y directions are orthogonal with north to the top. The X and Y coordinate scales do not need to be 
equal, but they must each be scaled linearly within the map area. If necessary, remove any distortion 
using an image editor. Select Map as the source, the correct element, line or plane, and press OK. There
will be a prompt for two points with known coordinates to define the area and coordinates. If the result 
is satisfactory, begin digitizing the elements by clicking on a start point and then an end point. The 
coordinates entered into the spreadsheet will be the center point between the two points.
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Figure 2.9 An image of a spherical 
projection opened in the Digitize 
Window.

Figure 2.10 The Digitize Dialog showing options for 
digitizing orientation data from images.



3. Circular Plots

3.1 Introduction

Circular plots for two dimensional directional data include scatter plots, circular histograms, and 
circular frequency polygons (Davis 1985; Fisher et al. 1987; Cheeney, 1983; Howarth, 1999; Mardia 
and  Jupp, 2000). Circular plots can also be used to display the horizontal angles of lines and planes, 
such as lineation trends. For planes it is possible to plot the strike direction, dip direction, or the 
azimuth of the plane normal. The data may be directed or undirected. Undirected data plots two points 
at 180°, or can be plotted on a double angle, modulo 180°, plot. The settings for these plots are in the 
Preferences dialog using the Circular Histogram selection.

3.2 Circular Scatter Plots

A simple circular scatter plot shows the data distribution on a circular plot, normally the perimeter of a 
unit circle (Cheeney, 1983; Mardia and Jupp, 2000). Directional rays may be drawn from the circle 
center, or symbols plotted on the perimeter. The vector mean, for directed or undirected data (Section 
3.5), can also be displayed. There are many variations on scatter plots, Orient implements ray plots 
with lines drawn from the center, and with symbols on the perimeter (Figures 3.1 and 3.2). 

Figure 3.1 is a circular scatter plot of the travel directions of 76 turtles after laying eggs (data from 
Gould cited in Mardia and Jupp, 2000), an example of directed circular directional data. In order to 
better visualize overlapping data points, the opacity of the data point symbols is set to 50%. Figure 3.2 
is a plot of the means of two joint sets from each of 24 counties in central New York (data from Parker, 
1942). This data is plotted as strike azimuths, an example of undirected data.
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Figure 3.1 Circular scatter plot of the 
orientations of 76 turtles after laying eggs 
(Gould's data from Mardia and Jupp, 2000).

Figure 3.2 Circular scatter plot of the means of
two joint sets from each of 24 counties in 
central New York (data from Parker, 1942).



3.3 Circular Histograms

Two dimensional directional data is commonly displayed as a circular frequency histogram, where the 
data count is tallied for bins or sectors of a set angular width. A commonly used graph is a rose 
diagram constructed with sector radii proportional to class frequency, an equidistance rose diagram. 
Figure 3.3 shows an example for directed data. Unfortunately, such a diagram is biased, and not a true 
histogram, because the area displayed for a single count increases with the radius. An unbiased plot is 
an equal-area circular histogram where each count has an equal area, and the sector area is proportional
to class frequency (Cheeney, 1983; Mardia and Jupp, 2000; Figure 3.4). Figures 3.5 and 3.6 are 
examples for undirected data.

Each of these plots is drawn with 24 bins, or 15° sectors. The selection of bin size will change the 
appearance of the diagram, an example is shown for circular frequency polygons in Section 3.3.
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Figure 3.3 Equidistance  rose diagram of the 
directed turtle data shown in Figure 3.1. The 
increasing area for larger bin counts results in 
an area bias, so this is not a true histogram.

Figure 3.4 Equal-area circular histogram, or 
rose diagram, of the directed turtle data shown 
in Figure 3.1. Each count has an equal area, 
removing area bias.



3.4 Circular Frequency Polygons

A circular frequency polygon (Haughton, 1864, in Howarth, 1999), or kite diagram (Davis, 1986; Swan
and Sandilands, 1995), is an alternative graph for displaying the circular directional data. In a circular 
frequency polygon diagram the bin sector centers are connected by straight lines to form a polygon. 
Figure 3.7 is a circular frequency polygon diagram of the directed turtle data (from Figure 3.1) using 24
15° bin sectors, the same size as in Figures 3.3 to 3.6. 
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Figure 3.7 Circular frequency polygon plot, or
kite diagram, of the directed turtle data shown 
in Figure 3.1, using 24 15° sector bins.

Figure 3.5 Equidistance rose diagram of the 
undirected joint data shown in Figure 3.2. The 
increasing area for larger bin counts results in 
an area bias, so this is not a true histogram. 

Figure 3.6 Equal-area circular histogram of the
undirected joint data shown in Figure 3.2. Each
count has an equal area, removing area bias.



Figure 3.8 is an example of an undirected circular frequency polygon using the joint data (Figure 3.2), 
also using 24 15° bins. To illustrate the effect of bin size on circular histograms, Figure 3.9 is the same 
data plotted using 12 30° sector bins.

3.5 Circular Mean

A simple measure of location, or best-fit, to circular directional data is the mean direction, which is 
calculated as a vector sum. For directed data the two sums are calculated:

Then the mean resultant length and direction, or center of mass of the coordinates, is calculated as:

Since the mean resultant length approaches 1 as directions converge, it is common to cite the sample 
circular variance:
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Figure 3.8 Circular frequency polygon plot, or 
kite diagram, of the undirected joint data 
shown in Figure 3.2, using 24 15° sector bins.

Figure 3.9 Circular frequency polygon 
diagram of the joint data as in Figure 3.8, but 
using 12 30° sector bins.



which is 0 when all the directions are identical. For undirected data the same calculation is done, 
however θ is doubled prior to the summation, and the result is halved. For details of statistical measures
and tests for circular directional data see Mardia (1972), Cheeney (1983), Davis (1985), Fisher et al. 
(1987), and Mardia and Jupp (2000). 

3.6 Tutorial 3 – Circular Plots

Open the file Gould from the Example Data folder (any of the csv, tsv. ods, or xlsx versions) in Orient, 
and click on the Circular Histogram icon. In the Preferences dialog check Directed in the Circular 

Histogram Symbols pane. If no settings have been previously modified the projection will look as in 
Figure 3.4. The Help Restore Defaults command can be used to reset the preferences if desired.

This is an example of directed circular data. The default display is an equal-area circular histogram, or 
rose diagram. In the Symbols pane this data type is displayed as Default, as none was specified in the 
file. Next, in the Histogram pane, select the Equidistance plot (Figure 3.3), and then the Frequency 

Polygon (Figure 3.7) to compare plot types. Note how the equal distance plot unequally scales the 
areas, giving more significance to each additional data point in a bin. This is why it is generally 
preferable to use an equal area or frequency polygon (kite) plot.

Next, open the file Parker 1942. This is an example of undirected circular data. They are treated as 
circular (instead of spherical) data because, although joints are planar, only the strikes were reported. 
Note that, because these are planes recorded by strike, the direction plotted should be specified as 
Strike, otherwise the plane's normal would be plotted. Reset the Histogram to Equal-Area.

There are two data types in this file, J1 and J2. In the Symbols pane, select J1 and set the Histogram Fill

Color to red, and uncheck Symbol for both data types, J1 and J2, and uncheck Directed. The resulting 
plot should be as in Figure 3.6. Next, in the Histogram pane, select the Equidistant plot (Figure 3.5), 
and then the Frequency Polygon (Figure 3.8) to compare plot types.
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4. Spherical Projections

4.1 Introduction

A primary function of Orient is the creation and manipulation of spherical projections of directional 
data, in particular azimuthal spherical projections that project the surface of a sphere onto a plane. This 
chapter discusses mathematical concepts related to spherical projections, in particular the geometry of 
several common projections, and the spherical nets which are commonly used to display and work with
these projections. A final section on nomenclature discuses terminology and common errors that occur 
in the literature.

4.2 Geometry of Spherical Projections

A spherical projection is a mathematical transformation that maps points on the surface of a sphere to 
points on another surface, commonly a plane. Astronomers, cartographers, geologists, and others have 
devised numerous such projections over thousands of years, however two, the stereographic projection 
and the equal-area projection, are particularly useful for displaying the angular relationships among 
lines and planes in three-dimensional space. A third projection, the orthographic projection, is less 
commonly used, but is important for some applications, and is easily visualized. These are azimuthal 
spherical projections, projections of a sphere onto a plane that preserve the directions (azimuths) of 
lines passing through the center of the projection. This is an important characteristic as azimuths, or 
horizontal angles from north (strike, trend, etc.), are standard measurements in structural geology, 
geophysics, and other scientific disciplines.

The directions of lines and planes in space are fundamental measurements in structural geology. Since 
planes can be uniquely defined by the orientation of the plane's pole, or normal, it is sufficient to 
describe the direction of a line. If only the direction of a line, and not it's position, is being considered, 
it can be described in reference to a unit sphere, of radius, R = 1. A right-handed cartesian coordinate 
system is defined with zero at the center of the sphere. A standard convention, used here, is to select X, 
Y, Z = East, North, Up (see Section 4.8 for alternative conventions). A line, L, passing through the 
center of the sphere, the origin, will pierce the sphere at two diametrically opposed points (Figure 4.1). 

If the line represents undirected axial data (as opposed to directed data), such as a fold axis or the pole 
to a joint plane, it is allowable to choose either point. In structural geology the convention is to choose 
the point on the lower hemisphere, P (the opposite convention is used in mineralogy). The three 
coordinates of point P are known as direction cosines, and uniquely define the direction of the line. 
More commonly, the trend (azimuth or declination) and plunge (inclination) of the line are given. In 
Figure 4.1, the trend of the line is 090°, and it's plunge is δ. It is a helpful reminder in field notes to 
designate horizontal angles using three digits, where 000° = north, 090° = east, 180° = south, etc., and 
to specify vertical angles using two digits, from horizontal, 00°, to vertical, 90°. Note that directed data,
such as fault slip directions, may have negative, upward directed, inclinations. 

An important tool for plotting line and plane data by hand, and for geometric problem solving, is a 
spherical net. A spherical net is a grid formed by the projection of great and small circles, equivalent to 
lines of longitude and latitude. Nets are commonly either meridianal or polar, that is, projected onto a 
meridian (often the equator) or a pole. The terms equator and pole (or axis) will be used to refer to the 
equivalent geometric features on the net, it is essential to remember that they do not have an absolute 
reference frame, that is, the net axis is not equivalent to geographic north. When used to plot data by 
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hand, an overlay with an absolute geographic reference frame (North, East, South, etc.) is used (Ragan 
2009).

The projections described here are spherical projections, so equal-area projection is assumed to mean 
equal-area spherical projection. Other projections are possible, such as hyperboloidal projections, 
which include equal-area and stereographic hyperboloidal projections (Yamaji, 2008; Vollmer, 2011). 
In these projections the surface of a hyperboloid is projected onto a plane. These are used in the context
of strain analysis, and are unlikely to be confused with the more common spherical projections. 

4.3 Orthographic Projection

The orthographic projection is an important projection in which points are projected along parallel rays,
as if illuminated by an infinitely distant light source. Figure 4.2 gives the geometric definition of the 
orthographic spherical projection. A corresponding orthographic polar net is shown in Figure 4.3, and 
an orthographic meridianal net in Figure 4.4. The projection of point P in the sphere to point P' on the 
plane is parallel to the Cartesian axis Z, effectively giving a projection following a ray from Z equals 
positive infinity. This type of projection gives a realistic view of a distant sphere, such as the moon 
viewed from Earth. It is azimuthal, but angles and area are not generally preserved. When plotting 
geologic data it is important that area, and therefore data densities, are preserved, so the orthographic 
projection unsuitable for such purposes. The net does, however, have other uses, such as the 
construction of block diagrams (e.g., Ragan, 2009).
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Figure 4.1 Definition of the 
point, P, on the unit sphere that
defines the orientation of the 
undirected line L. The line is 
trending toward X (east) and 
it's plunge is δ. The Y 
coordinate axis (north) is into 
the page.



4.4 Stereographic Projection

The stereographic or equal-angle spherical projection is widely used in mineralogy and structural 
geology. It was known to the Greeks Hipparchus and Ptolemy, and given its present name by François 
d'Aguilon in 1613 (Snyder, 1987). It is defined geometrically by a ray passing from a point on the 
sphere (here Z = 1) through a point P on the sphere to the projected point P' on the plane (Figure 4.5). 

The corresponding stereographic nets are shown in Figures 4.6 and 4.7. Both hemispheres can be 
represented, however the convention in structural geology is to use the lower hemisphere. The 
meridinal stereographic net is known as a stereonet (Bucher, 1944; Billings 1954; Donn and Shimer, 
1958; Badgley, 1959), or Wulff net, named after the crystallographer G.V. Wulff who published a 
stereographic net in 1902 (Whitten, 1966), although a much older example was published by François 
de Aguilón in 1613 (Section 4.15). The stereonet is commonly used in mineralogy, however, the 
convention is to use the upper hemisphere. It is therefore good practice to clearly label all projections, 
for example lower-hemisphere stereographic projection.
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Figure 4.5 Geometric definition of 
the stereographic projection. Point P
on the sphere is projected to point P'
on the plane.

Figure 4.2 Geometric definition of 
the orthographic spherical 
projection. Point P on the sphere is 
projected to point P' on the plane.

Figure 4.3 Polar 
orthographic net.

Figure 4.4 Meridianal 
orthographic net.

Figure 4.6 Polar 
stereographic net.

Figure 4.7 Meridianal 
stereographic net, stereonet, 
or Wulff net.



The projection is azimuthal, so lines passing through the center of the projection have true direction, 
these represent great circles. Note that area in Figures 4.6 and 4.7 is distorted, the projection preserves 
angles (is conformal), but it does not preserve area. An important consequence is that great circles 
(such as meridians) and small circles project as circular arcs. These properties make it useful for 
numerous geometric constructions in structural geology (Bucher, 1944; Phillips, 1954; Donn and 
Shimer, 1958; Badgley, 1959; Lisle and Leyshorn, 2004; Ragan, 2009). 

4.5 Equal-Area Projection

The Lambert azimuthal equal-area spherical projection was presented by Johann Heinrich Lambert in 
1722 as a map projection that preserved area (Lambert, 1722; Snyder, 1987; Section 4.11). It is not 
conformal, however it preserves area, so densities are not distorted. This equal-area projection is used 
widely in the geologic literature for the presentation of directional data, and is the most likely of these 
projections to be encountered in literature related to structural geology. Figures 4.8, 4.9, and 4.10 
illustrate the geometric definition, polar net, and meridianal net respectively. 

In 1925 Walter Schmidt (see Section 4.12) recognized that the equal-area projection should be used for 
plotting samples of rock fabrics, such as crystallographic axes, this was later extended to bedding 
planes, joints, and other directional data (Schmidt, 1925; Sander, 1948, 1950, 1970; Phillips, 1954; 
Badgley, 1959; Turner and Weiss, 1963; Whitten, 1966; Ramsay, 1967; Hobbs et al., 1976; Fisher et al.,
1987; Mardia and Jupp, 2000; Van der Pluijm and Marshak, 2004; Pollard and Fletcher, 2005; Twiss 
and Moores, 2007; Ragan, 2009; Fossen, 2016). 

The term azimuthal indicates that, like stereographic and orthographic projections, lines passing 
through the center have true direction, and that it is projected onto a plane. This distinguishes it from 
other equal-area projections, which include the projection of a sphere onto conical and other surfaces, 
however, in structural geology, it can usually be referred to simply as an equal-area projection without 
ambiguity. The projection is also known as the Schmidt projection, after Walter Schmidt who first used 
it in structural geology (Schmidt, 1925; Turner and Weiss, 1963), and the meridianal equal-area net 
(Figure 4.10), is known as a Schmidt net (Knopf and Ingerson, 1938; Billings, 1942; Sander, 1948, 
1950, 1970; Mardia and Jupp, 2000). The polar equal-area net, or Billings net (Figure 4.9), is useful for
rapidly plotting measurements by hand.
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Figure 4.8 Geometric definition 
of the equal-area projection.

Figure 4.9 Polar equal-area 
net, or Billings net.

Figure 4.10 Meridianal 
equal-area net, or Schmidt 
net.



4.6 Equidistant Projection

The azimuthal equidistant spherical projection preserves distances from the center of the projection, but
is not equal-area or conformal. In its polar form parallels (small circles) are equally spaced circles. Like
the orthographic and stereographic projections, it was used in ancient times, probably by the Egyptians 
for star charts (Snyder, 1987). The equidistant property makes it useful for showing distances from the 
center point of projection, such as airline flight distances, radio transmission paths, and seismic rays.

4.7 Density Distortion

It is commonly required to plot a sample of directional data to evaluate their density distribution, a 
descriptive statistical procedure intended to identify significant clusters, girdles, or other patterns.  In 
1925 Walter Schmidt recognized that the distortion of area makes the stereographic projection 
unsuitable for studying rock fabric data, and proposed the use of the Lambert equal-area projection for 
such directional data (Figure 4.10; Section 4.11).  

To illustrate the effect of density distortion, 2048 directed data points were calculated on a spherical 
Fibonacci grid (Swinbank and Purser, 2006; command Data Fibonacci Sphere), and plotted using 
orthographic (Figure 4.11), stereographic (Figure 4.12), Lambert equal-area (Figure 4.13), and 
equidistant (Figure 4.14)  projections. The points have equal densities on the sphere (except at the very 
center), but the densities are highly distorted by the orthographic and stereographic projections. 
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Figure 4.11 Lower-hemisphere orthographic 
projection of 2048 directed data points on a 
spherical Fibonacci grid to illustrate density 
distortion. The Data Fibonacci Sphere 
command will generate this distribution.

Figure 4.12 Lower-hemisphere 
stereographic projection of data (stereogram)
as in Figure 4.11 to illustrate the strong  
density distortion.



The lack of density distortion in Figure 4.13 illustrates the advantage of the Lambert equal-area 
projection for plotting fabric data, and why it is used (Schmidt, 1925; Sander, 1948, 1950, 1970; 
Phillips, 1954; Badgley, 1959; Turner and Weiss, 1963; Whitten, 1966; Ramsay, 1967; Hobbs et al., 
1976; Fisher et al., 1987; Mardia and Jupp, 2000; Van der Pluijm and Marshak, 2004; Pollard and 
Fletcher, 2005; Twiss and Moores, 2007; Ragan, 2009; Fossen, 2016). The term Schmidt plot has been 
proposed for such a plot (Vollmer, 2015; Section 4.12), and is used in subsequent sections.

4.8 Maxima and Eigenvectors

Spherical directional data is characterized by either directed unit vectors or undirected axes in space. 
The concept of a mean value is familiar when dealing with scalar values like temperature. Determining
such a value for directional data is more complex, averaging trends and plunges separately does not 
work. As with circular data, a useful measure is the vector mean, the center of mass for directed data. 
The procedure for finding the mean is similar to that for directed circular data. A data point on a unit 
sphere can be represented by three coordinates, which are its direction cosines. If we designate this 
point as the vector x = (x1, x2, x3), then the mean vector is the averaged sum: 

with mean resultant length:
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Figure 4.14: Lower hemisphere equidistant 
projection. This projection preserves distance
form the center, but shows a small density 
distortion.

Figure 4.13 Lower hemisphere Lambert 
equal-area projection (Schmidt plot) of data 
as in Figure 4.11 illustrating the lack of 
density distortion.



and mean direction, the normalized mean vector:

Axial data requires the computation of eigenvectors, an important concept that gives best-fit values, or 
moments of inertia, for tensors, such as the principal stresses of a stress tensor. In the context of 
directional data, imagine that each line passing through the center of the unit sphere is represented by a 
small mass at each of the two points where it pierces the sphere. If the sphere were spinning, it would 
have a tendency to spin about the axis of minimum density, this is the minimum eigenvector. If it were 
rolling, it would have a tendency to stop with the maximum density at the bottom, this is the maximum 
eigenvector, the intermediate eigenvector is exactly 90° from the other two. As an example, Figure 4.15
is a Schmidt plot of bedding plane normals represented by points on the lower hemisphere.

The orientation tensor, or scatter matrix (Fisher, Lewis and Emblton, 1987; Mardia and Jupp, 2000), is 
given by:

the averaged sum of the unit directional vectors times their transpose. The eigenvectors of this matrix 
are determined and plotted. In Figure 4.16 the maximum eigenvector is plotted as a red circle, and the 
minimum a blue circle. In cylindrical folds the minimum eigenvector of poles to bedding gives an 
estimate of a cylindrical fold axis, and a great circle normal to the minimum eigenvector gives the best-
fit plane through the plane poles (Figure 4.16). 
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Figure 4.15 Schmidt scatter plot of 56 poles to 
folded bedding in graywacke, Albany County, 
New York (data from Vollmer, 1981).

Figure 4.16 Schmidt plot as in Figure 4.15, 
with maximum (red), minimum (blue) 
eigenvectors, and the great circle normal to the 
minimum eigenvector. The minimum 
eigenvector is an estimate of the fold axis.



See Figure 1.9 and Section 5.6 for a visualization of this data. For details of statistical measures and 
tests for spherical directional data see Mardia (1972), Cheeney (1983), Davis (1985), Fisher et al. 
(1987), and Mardia and Jupp (2000). 

4.9 Tutorial 4 – Scatter Plots

Open the file Vollmer 1981a from the Example Data folder (any of the csv, tsv, ods, or xlsx versions) in
Orient, and click on the Spherical Projection icon.

If not already done, remove the Schmidt net from the background. Click on the Preferences icon, and 
locate the Net pane under the Spherical Projection settings. Uncheck both Axes and Net. Next, in the 
Labels pane, change the Increment to -90, Offset to 14, and the Size to 12. 

In the Symbols pane, Data Type S0 should be selected, and the Symbol checkbox checked. Set the Fill 

Symbol Color to yellow. At this point the plot should look as in Figure 4.15. 

To add eigenvector maxima, select the Maxima pane, and check Visible. Under Maximum Eigenvector 
check Symbol, and under Minimum Eigenvector check Symbol and Great Circle. Set the great circle 
Stroke Width to 2. The plot should now look as in Figure 4.16. This type of scatter plot gives a simple 
summary of the data distribution. Section 4.9 shows how to add contouring, and Chapter 6 discusses 
how to add confidence cones about the maxima.

4.10 Contouring

A simple Schmidt scatter plot of data using an equal-area projection (Figure 4.15), or with maxima 
displayed (Figure 4.16) may suffice for some data sets. However, since the first use of lower 
hemisphere equal-area projections for displaying directional data (Schmidt, 1925), they have 
commonly been contoured to bring out underlying patterns such as girdles or point clusters (Figure 
4.17).
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Schmidt (1925) devised a method to hand contour directional data using percentages. This method, or 
variants of it, is still used (Ragan, 2009), although it is generally superseded by computerized methods 
(Vollmer, 1995;  Ragan, 2009). Schmidt contouring, however, suffers in that it does not correctly take 
into account the sample size. Kamb (1959) therefore introduced a method using binomial statistics, 
giving a greater statistical validity to the contours (Kamb, 1959; Vollmer, 1995).

A problem with both the Schmidt and Kamb methods, in addition to being hand-contouring methods, is
that the density calculations are done on the projection plane after projecting the data points from the 
sphere, causing distortion. Therefore a modified Kamb method, which calculates density directly on the 
sphere, was introduced in Orient in 1986 (Vollmer, 1988, 1990, 1995). An alternative method, using 
probability density estimation on the sphere, is given by Diggle and Fisher (1985). Orient implements 
the modified Kamb, modified Schmidt (Vollmer, 1995), and probability density methods.

The settings related to contouring are in the Preferences dialog on the Spherical Projection Contours 
and Gridding panels. Gridding is the first step in contouring, in which the density calculations are done.
In this panel select the Method, Modified Kamb or Probability Density (Modified Schmidt is not 
recommended). Normally Weighting should be left at the default setting Exponential, Sigma at the 
default 3, and Calculate Kappa checked. Details for these settings can be found in Vollmer (1995) and 
Diggle and Fisher (1985). The number of nodes, Nodes, sets the number of calculated grid points, the 
default of 100 gives 10000 calculated nodes. A value of 30 is the approximate minimum for acceptable 
contours, the default value of 100 generally gives very good resolution. 

Once the gridding method is selected, the Contour Settings pane is used to set the number and type of 
contour lines. Figure 4.18 is a Schmidt scatter plot of crystallographic axes of ice (from Kamb, 1956), 
which is shown contoured using the 3σ modified Kamb method with a 2σ contour interval in Figure 
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Figure 4.17 Early examples of contoured lower hemisphere equal-area projections. (A) 
Crystallographic fabric in a sample of granite (Schmidt, 1925). (B) Crystallographic axes in a 
sample of ice (Kamb, 1959).



4.19. This is the data and contour levels that Kamb used to hand-contour Figure 4.17 B. The Contour 

levels option selected, and an Interval of 2 entered for this plot.

It is also possible to scale the contour levels to multiples of uniform density, by checking Uniform 

density from the Gridding Settings pane. This option is only available for Exponential weighting of the 
Modified Kamb method, and when Contour interval is selected. This rescales the grid so the contour 
interval is in multiples of the expected uniform density (MUD). A scale bar can also be optionally 
displayed for the color gradient scale (Figure 4.20).   

An alternate, and perhaps preferable, choice for selecting contours is to contour the density distribution 
at equal levels (Fisher et al., 1987). Figure 4.21 is a 3σ modified Kamb contour plot of this data 
contoured at 20% density, 5 equally spaced levels over the density distribution. To do this, select 
Contour levels In the Contour Settings panel, and enter the number of Contour levels, in this case 5 
which gives contours at 20% density. 
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Figure 4.18 Schmidt scatter plot of 
crystallographic axes of ice (data digitized 
from Kamb, 1956).

Figure 4.19 Schmidt plot with 3σ modified 
Kamb contours of the data from Figure 4.18 
with contours at 2σ. Compare with Figure 
4.17 B. This plot uses a WBGYR Gradient 
option.



Figure 4.22 is an additional example of this data, but contoured at 10% density, using the BCYR 
gradient. Figure 4.23 is the same plot, but with the Fill contours option selected in the Contour Settings 
pane.

An additional method that can be used is the probability density method of Diggle and Fisher (1985). 
An example plot is shown in Figure 4.24. In this case the resulting contours are similar to those given 
by the 3σ modified Kamb method (Figure 4.22), however this is not the case for all data sets. 

Finally, Figure 4.25 is a 3σ modified Kamb contoured Schmidt plot of the folded graywake data from 
Figure 4.15 for an example of data with a strong girdle distribution.   
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Figure 4.20 Schmidt plot of data in Figure 
4.18 with 3σ modified Kamb contours at 
multiples of uniform density, with scale bar.

Figure 4.21 Schmidt plot of data in Figure 
4.18 with probability density contours at 20% 
density, 5 equally spaced levels over the 
density distribution.
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Figure 4.22 Schmidt plot of data in Figure 
4.17 with 3σ modified Kamb contours at 10% 
density. This plot uses the BCYR Gradient 
option.

Figure 4.23 Schmidt plot of data in Figure 
4.17 with 3σ modified Kamb contours at 10%
density, and the Gradient and Fill Contours 
options on.

Figure 4.24 Schmidt plot of data in Figure 4.17 
with probability density contours at 10% density.
In this case, the method gives contours similar to
the  3σ modified Kamb method (Figure 4.21).

Figure 4.25 Schmidt plot of poles to bedding
from Figure 4.14 with modified Kamb 
contours at  20% density.



4.11 Tutorial 5 – Contour Plots

Open the file Vollmer 1981a from the Example Data folder (any of the csv, tsv. ods, or xlsx versions) in
Orient, and click on the Spherical Projection icon. Click on the Preferences icon, and locate the Net 
pane under the Spherical Projection settings. Uncheck both Axes and Net. Next, in the Labels pane, 
change the Increment to -90, Offset to 14, and Size to 12. If still on from the previous tutorial, turn off 
eigenvector and confidence cone display in the Maxima panel. The Help Restore Defaults command 
can be used to reset all preferences if desired.

In the Symbols pane the S0 (bedding) data set should be selected. Uncheck the Symbol option, and 
check both Contour and Gradient. Click on the gradient paint picker and select the WBGYR (White 
Blue Green Yellow Red) preset. Finally, in the Contours pane select Contour levels, and set the Levels 
to 5. This gives modified Kamb contours at 20% density levels, and the plot should appear as in Figure 
4.25.

4.12 History and Terminology

Spherical projections have long been used for mapping the terrestrial and celestial spheres. The 
stereographic projection was known to the Greeks Hipparchus and Ptolemy, and was given its present 
name by François d'Aguilon in 1613 (de Aguilón, 1613; Snyder, 1985; Figures 4.26 and 4.27). The 
more recent Lambert azimuthal equal-area projection was invented by Lambert in 1772 (Lambert, 
1772; Snyder, 1985; Figure 4.28). 
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Figure 4.26 Illustration by Peter Paul Rubens showing a globe held by Atlas illuminated by 
winged putti to illuminate the construction of a stereographic net (de Aguilón, 1613).



In 1925 Walter Schmidt recognized that the stereographic projection was unsuitable for directional data
analysis due to its distortion of area (Section 4.6), and introduced the use of the equal-area projection 
for fabric analysis. Rejecting the stereographic, or Wulff, net used by mineralogists, Schmidt 
introduced the equal-area net, or Schmidt net, as well as data contouring (Figures 4.29 and 4.30). 

In 1944 Walter H. Bucher introduced the stereonet for use in structural geology in North America 
(Bucher, 1944; Billings 1954; Donn and Shimer, 1958; Badgley, 1959). Bucher defined stereonet as 
shorthand for stereographic net (Bucher, 1944, p. 193), and stereogram as a diagram produced using 
the stereographic net (Bucher, 1944, p. 194). The phrases equal-area stereonet, and equal-area 
stereogram are contradictions. 
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Figure 4.27 Stereographic net, or stereonet, published by 
François de Aguilón, 1613.

Figure 4.28 Illustration of the Lambert azimuthal equal-area 
projection by Johann Heinrich Lambert (Lambert, 1722).



The equal-area projection is correctly referred to as the Lambert azimuthal equal-area projection 
(Snyder, 1985), although in the context of directional data analysis, it is usually referred to simply it as 
the equal-area projection. The projected hemisphere should be given, as lower hemisphere equal-area 
projection. Note that other spherical equal-area projections exist, such as the cylindrical equal-area 
projection (Snyder, 1985). Additionally, hyperboloidal equal-area and stereographic projections exist, 
and are used for some geologic data (Yamaji, 2008; Vollmer, 2011). The term Schmidt projection has 
been used for the projection (Mardia and Jupp 2000), and the term Schmidt plot is suggested for plots 
produced using the projection (Vollmer, 2015; Section 4.12).

Early references (Schmidt, 1925; Billings 1942, 1954; Bucher, 1944; Sander, 1948, 1950, 1970; 
Phillips, 1954; De Sitter, 1956; Donn and Shimer, 1958; Badgley, 1959; Turner and Weiss, 1963; Hills, 
1963, Whitten, 1966; Ramsay, 1967, Hobbs et al., 1976) are careful to use correct terminology, as are 
most current structural geology texts (Marshak and Mitra, 1988; Van der Pluijm and Marshak, 2004; 
Pollard and Fletcher, 2005; Twiss and Moores, 2007; Ragan, 2009; Fossen, 2016). Note that:

• The equal-area projection is not a type of stereographic projection
• A stereonet, or Wulff net, is a stereographic net
• A Schmidt net, or equal-area net, is not a stereonet
• Scatter plots and contour plots are not stereonets
• The phrase equal-area stereonet is a contradiction
• The phrase equal-area stereographic projection is a contradiction

4.13 Schmidt Plots

The Schmidt net (Schmidt, 1925) was widely used in structural geology (Knopf and Ingerson, 1938; 
Billings, 1942; Turner and Weiss, 1963) prior to the introduction of the stereonet (Bucher, 1944;  
Billings, 1952; Phillips, 1954), however it is common to see spherical projection plots mislabeled as 
stereonets. As they are not (Figure 4.7 is a stereonet), what they are, and what projection was used to 
make them, is not clear. The equal-area projection and the Schmidt net have a long and important 
history in structural geology, mislabeling them as stereonets does not give due credit to their inventor. 
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Figure 4.29 Lambert equal-area net, 
or Schmidt net, as published by Walter
Schmidt in 1925.

Figure 4.30 Lower hemisphere equal-
area projection, or Schmidt plot, of 
crystallographic fabric (Schmidt, 
1925). 



In 1925 Schmidt recognized that the stereographic projection was not suitable for directional data 
analysis, and invented the Schmidt net over 90 years ago.

Although diagrams produced using Schmidt's equal-area method (Schmidt, 1925) are ubiquitous in 
structural geology and tectonics, no succinct term exists for them. The term Schmidt plot therefore has 
been suggested for a lower-hemisphere Lambert azimuthal equal-area spherical projection of three-
dimensional directional data, such as foliation planes, joints, slickensides, magnetic vectors, 
crystallographic axes, fold axes, and lineations (Vollmer, 2015). These plots, which are often 
contoured, have been in common use in structural geology, tectonics, and related disciplines, since their
introduction by Walter Schmidt in 1925. 
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5. Coordinates and Rotations

5.1 Introduction

The rotations used for projection and data display are normally transparent to the user, and the default 
settings are sufficient in most cases. The default coordinates are local coordinates commonly used in 
geology (North at the top, and East at the right), however, it is easily configured for other common 
geographic or spherical coordinate systems, which is the first topic covered in in this section.

The second topic covered here is coordinate system rotation, or projection rotation. In some cases it is 
useful or necessary to view data in a more specialized coordinate system, for example centered over a 
specific location, or chosen parallel to one of the data maxima. The third topic is data rotation, which 
may be required for a number of reasons, such as paleomagnetic fold tests, or rotation of paleocurrent 
measurements back to horizontal.

Note that for directed data, symbols for data not on the current hemisphere will not appear. Rotations 
involving directed data will therefore often hide those data points. The Directed and Undirected drop-
down menus contain options to display hidden directed data, as well as the hidden duals of undirected 
data. See Section 5.6 for a discussion of these options.

5.2 Geographic Coordinates

The primary coordinate system is selected in the Preferences dialog in the Spherical Projection 

Projection Settings panel (Figure 5.1). In addition to the Projection and Hemisphere drop-down menus,
there is an Orientation drop-down menu from which six geographic coordinate systems (Polar, 

Antipolar, Equatorial 0, Equatorial 90, Equatorial 180, and Equatorial 270) and six spherical systems 
(XY, ZX, YZ, YX, XZ, and ZY planes) can be selected. These options allow views along any of the three 
axes in either direction. Additionally, there are checkboxes for inverting the projection about the Y and 
X axes. These are used, for example, to produce plots like Figure 1.3, a plot of directed magnetic data 
displayed on both hemispheres, as they essentially flip the hemisphere over. The Axes display changes 
when any of these are modified, so the current coordinate system is clear, for example X Right, Y Top, Z

Out is displayed for local coordinates. 
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Figures 5.2 to 5.7 are upper hemisphere equal-area projections of 14,229 earthquake epicenters with 
magnitudes greater than 4.5 from 1980 to 1990 (data from NOAA) plotted on the six standard 
geographic coordinate systems.
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Figure 5.1 The Preferences dialog Spherical 
Projection Settings pane displaying options for 
projections. The Axes display, here X Right, Y Top, Z 
Out, gives the current positions of the coordinate 
axes.

Figure 5.2 Upper hemisphere equal-area 
projection of 14,229 earthquake epicenters 
with magnitudes greater than 4.5 from 1980 
to 1990, centered at latitude, longitude 0°, 0°,
the Equatorial 0 coordinate system (data 
from NOAA).

Figure 5.3 Projection as in Figure 5.2, but 
centered at 0°, 90°, the Equatorial 90 
coordinate system. Compare with Figure 4.26
from Lambert, 1722.



The standard coordinate systems provide views of data along all coordinate axes, however it is also 
possible to select a view along an arbitrary axis using the Rotate Projection command. The Rotate 

Projection dialog is shown in Figure 5.8.
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Figure 5.6 Projection as in Figure 5.2, but 
centered at 90°, 0°, the Polar coordinate 
system.

Figure 5.7 Projection as in Figure 5.2, but 
centered at -90°, 0°, the Antipolar coordinate 
system.

Figure 5.5 Projection as in Figure 5.2, but 
centered at 0°, -90° , the Equatorial 270 
coordinate system. Compare with Figure 4.28 
from Lambert, 1722.

Figure 5.4 Projection as in Figure 5.2, but 
centered at 0°, 180°, the Equatorial 180 
coordinate system.



For example, to produce a projection centered at latitude, longitude 41.764, -74.156, first set the 
coordinate system to Equatorial 0. The projection, as in Figure 5.2, is now centered at 0°, 0°, with X 

Out, Y Right, Z Top. Set Z as the Axis, enter 74.157 into the Angle edit box, and press Apply. The 
projection is now centered at 0°, -74.157°. Then set Y as the Axis, enter 41.764 into the Angle edit box, 
and press Apply. The projection is now centered at 41.764°, -74.157° (Figure 5.9).
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Figure 5.8 The Rotate Projection dialog showing the settings for
a rotation of 74.156° about the Z axis, which is currently at the 
top of the projection.

Figure 5.9 Projection as in Figure 5.2, but 
centered at latitude, longitude 41.764°, 
-74.157°.



5.3 Tutorial 6 – Geographic Coordinates

Open the file Earthquakes With Continents from the Example Data folder, using any of the provided 
formats, and click on the Spherical Projection icon. The projection will now appear extremely 
cluttered. To remedy this, open the Preferences dialog and select the Spherical Projections Symbols 
pane. For the data type CO, uncheck Symbol, check Polyline, and check Directed. For the data type EQ,
set the Symbol Size to 1, the Stroke Color and Fill Color to red, and the Stroke and Fill Opacities to 50%.
Check Directed.

Next select the Net pane, uncheck Axes, and check Net. For the Y axis, uncheck both Major and Minor 
Great Circles and Small Circles. For the Z axis, check Major Great Circles and Major Small Circles, and
set both Stroke Colors to a very light gray.

Select the Projection panel, set the Hemisphere to Upper Hemisphere, and the Orientation to Equatorial

0. The projection is now centered at latitude, longitude 0°, 0°, X is out, Y is  right, Z is at the top, and 
the plot should appear as in Figure 5.2.

To center the projection at latitude, longitude 41.764°, -74.156°, open the Rotate Projection dialog 
(Figure 5.8). Set Z as the Axis, enter 74.157 into the Angle edit box, and press Apply. The projection is 
now centered at 0°, -74.157°. Then set Y as the Axis, enter 41.764 into the Angle edit box, and press 
Apply. The projection is now centered at 41.764°, -74.157° (Figure 5.9).

5.4 Projection Rotation

As was shown in the Section 5.2, it is possible to rotate the projection to any orientation. The Rotate 

Projection dialog (Figure 5.10) allows the sequential application of rotations about any coordinate axis, 
or about arbitrary axes, by pressing the Apply button. The rotations can be undone in the order they 
were applied, using the Undo button, or can be completely removed using the Revert button.

By default the Interactive option is selected (Figure 5.10). This allows the interactive rotation of a 
spherical projection using the mouse. Simply click on a point, and drag it to to a new location on the 
projection. 

In examining some data sets, such as crystallographic axes, it may be desirable to produce a plot whose
axes are related to the distribution, such as the eigenvectors (Fisher et al., 1987). Figure 5.10 shows the 
Rotate Projection dialog with settings to rotate a data set to the maximum eigenvector. Any of the three 
eigenvectors, the mean vector, or the pole to the best fit small circle (Section 7.3), can be selected.
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Figure 5.11 is a Schmidt plot with modified Kamb contours at 20% of the poles to bedding data shown 
in Figure 4.14, which is then shown rotated to the maximum (Figure 5.12), intermediate (Figure 5.13), 
and minimum (Figure 5.14) eigenvectors.
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Figure 5.10 The Rotate Projection dialog showing the settings 
for a rotation to center the projection on the maximum 
eigenvector of the S0 data type.

Figure 5.11 Schmidt plot with modified 
Kamb contours of poles to bedding data from
Figure 4.15 with contours at 20% density.

Figure 5.12 Contour plot as in Figure 5.11, 
rotated to the maximum eigenvector.



5.5 Tutorial 7 – Rotation to Maxima

Open the file Vollmer 1981 from the Example Data folder (any of the formats is fine) in Orient, and 
click on the Spherical Projection icon. 

If not already done, remove the Schmidt net from the background. Click on the Preferences icon, and 
locate the Net pane under the Spherical Projection settings. Uncheck Great circles, Small circles, and 
Minor Tick marks. Set the Major Tick marks increment (Inc) to 10, and the length (Len) to 4 for the X, Y,
and Z axes. Check Above. Next, in the Labels pane, change the Increment to -90, the Offset to 14, and 
the Size to 12. 

In the Spherical Projection settings, restore the projection to Lower Hemisphere and Local coordinates 
if necessary. In the Symbols pane, uncheck Symbol for the S0 data type, and check both Contour and 
Gradient. Click on the gradient paint picker and select the WBGYR (White Blue Green Yellow Red) 
preset. Finally, in the Contours pane set Levels to 5. This gives modified Kamb contours at 20% 
density levels, and the plot should appear as in Figure 5.11.

Use the Rotate Projection command to open the Rotate Projection dialog (Figure 5.9). Set Axis to 
Maxima, Data Type to S0, and Eigenvector to Maximum to produce Figure 5.12, Intermediate for 
Figure 5.13, and Minimum for Figure 5.14.

5.6 Tutorial 8 – Data Visualization

It can be difficult to visualize the three dimensional geometry of data plotted on spherical projections. 
In this tutorial we will use the folded bedding data shown in Figure 4.15 with projection rotation to get 
a visualization of the geometric significance of poles to folded beds. 

Open the example data file Vollmer 1981a, and display a spherical projection using the Graph 

Spherical Projection command. For this visualization we will use the orthographic projection. While it 
distorts area and density (Section 4.6), it gives an easily visualized image of a sphere as viewed from a 
distance. You may also want to try using an upper hemisphere projection which you may find easier to 
visualize, but start with the lower hemisphere, which is the standard one for such plots.
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Figure 5.14 Contour plot as in Figure 5.11, 
rotated to the minimum eigenvector.

Figure 5.13 Contour plot as in Figure 5.11, 
rotated to the intermediate eigenvector.



From the Spherical Projection pane of the Preferences dialog, select Orthographic. In the Symbols 
pane, set the symbol Fill Color to yellow, and check the Ray option. Next, in the Maxima pane check 
Visible. For the Maximum Eigenvector check Symbol and Ray. For the Minimum Eigenvector,  check 
Symbol, Ray, and Great Circle. Set the Stroke Width of the Great Circle to 2. The resulting Schmidt 
plot is shown in Figure 5.15. Finally, in the Spherical Projection panel, select Undirected 50% Opaque,
to give Figure 5.16.

At this point the data elements on the hidden (upper) hemisphere are translucent. Imagine that you can 
see through them down to the lower hemisphere. Now open the Rotate Projection dialog using the 
Graph Rotate Projection command, set Axis to X and Angle to 10. Apply increments of rotation using 
the Apply button, example results are shown in figures 5.17 and 5.18.
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Figure 5.15 Schmidt plot of data from Figure
4.15 with symbol rays, and maximum (red) 
and minimum eigenvectors (blue) displayed 
with rays and a great circle girdle.

Figure 5.16 Plot as in Figure 5.15 with 
Undirected 50% opaque selected in the 
Spherical Projection pane, so data on the 
hidden (upper) hemisphere is transparent.



It is also possible to rotate the projection interactively using the mouse. Simply click and drag on a 
location on the projection and drag it to another location. The projection will automatically update. 

Transparency can also be used to display directed data on the hidden hemisphere. Figure 5.19 illustrates
this on a Schmidt plot with directed magnetic data on the upper hemisphere plotted at 30% 
transparency. Overlapping data symbols can obscure a dense cluster, one technique to alleviate this is to
draw the symbols with a white or light colored border (stroke). Another option is to use transparent data
symbols to make the overlapping symbols be more easily seen, as shown in Figure 5.20. 
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Figure 5.17 Plot at in Figure 5.16 after a 
rotation of 30° about the X axis.

Figure 5.18 Plot as in Figure 5.16 after a 
rotation of 160° about the X axis.

Figure 5.19 Transparency can also be used to
display data on the hidden hemisphere. Here 
directed data on the upper hemisphere is 
displayed at 30% transparency. Schmidt plot 
of magnetic data as in Figure 1.3.

Figure 5.20 Transparent data symbols can be 
used to make overlapping symbols be more 
easily seen. Schmidt plot of data as in Figure 
5.19.



5.7 Data Rotation

The final topic in this section is data rotation. The principal is the same as projection rotation however 
the rotations are applied to the data, not the projection. The data can be sequentially rotated about any 
of the coordinate axes (Figure 5.21). Before using this command be sure you have a backup file of your
data, as this will change the values in the data window spreadsheet.

To try this command, open the file Vollmer 1981 as in Section 5.5, select all or part of the data, and 
apply several rotations using the Rotate Data command. Pressing the Apply button sequentially applies 
rotation by premultiplication of a rotation matrix, and updates any open projections. Press OK to accept
the rotated data, or Cancel to revert.
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Figure 5.21 The Rotate Data dialog allows rotation of the
data about any of the coordinate axes, or about an 
arbitrary axis of any orientation.



6. Confidence Cones and Bootstrapping

6.1 Introduction

Section 4.7 introduced the concept of calculating maxima for samples of directional data. In particular, 
the maximum, intermediate, and minimum eigenvectors for undirected, or axial, data, and the vector 
mean for directed, or vector data. The maximum eigenvector and vector mean are measures of the mean
value, or direction about which the samples cluster. The minimum eigenvector is used to locate the 
center of a great circle girdle, such as a cylindrical fold axis. The relative magnitudes of the 
eigenvectors give additional information about the type of distribution, this is discussed further in 
Chapter 9. The best fit small circle is discussed in Section 7.3.

The concept of a mean value is of great significance, but it does not say anything about the certainty of 
the estimate. This chapter discusses ways to provide uncertainty estimates, in particular deriving 
confidence cones about the mean. Only a basic overview is provided here, the statistical analysis of 
directional data is discussed in detail by Fisher et al. (1987), and Mardia and Jupp (2000). These texts 
should be consulted for additional details and statistical tests.

6.2 Spherical Distributions

There are a number of models for distributions of spherical directional data (Mardia, 1972; Fisher et al.,
1987; Mardia and Jupp, 2000). By analogy, the Gaussian, or normal, distribution is a familiar model for
scalar data. Four important distributions on the sphere are the Fisher, Kent, Watson, and Bingham 
distributions. An important distinction is whether the data is to be treated as undirected axes, or as 
directed vectors. For vectorial data, the vector mean is calculated, and the Fisher and Kent distributions
are applicable. For axial data, the eigenvectors are calculated, and the Watson and Bingham 
distributions are applicable. The numerical values for these is given in a log file using the Data 

Statistics command.

The Fisher (or von Mises-Fisher) distribution is the basic model for unimodal rotationally symmetric 
directed data, so, for example, is applicable to paleomagnetic vectors. This is a general and useful 
statistic for directed data. A confidence region is calculated for a symmetrical unimodal distribution, 
which gives a circular confidence cone.

The Kent distribution (Kent, 1982) is also a model for unimodal directed data, but does not assume the 
distribution is rotationally symmetric, so the confidence cone is elliptical, rather than circular. The Kent
statistic is calculated using moment estimation, similar to the Watson and Bingham statistics, but is 
centered on the vector mean.

The Watson distribution serves as the basic model for rotationally symmetric undirected lines (axes). 
The distribution has rotational symmetry as a bipolar or girdle distribution. The confidence region is 
bipolar, giving two confidence cones centered 180° apart in opposing hemispheres. Confidence cones 
can be calculated for the three axes of asymmetrical polar, girdle, or multimodal distributions, giving 
elliptical confidence cones. This distribution can be used for features such as normals to joint planes, or
quartz c-axes. It is common to determine the axes of folded bedding surfaces using the pole to a girdle, 
however note that assigning a younging direction to bedding allows it to be treated as vectorial data.

The Bingham distribution is also for undirected lines (axes), but does not assume rotational symmetry. 
It can be regarded as an extension of the Watson distribution, which is the Bingham distribution with 
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rotational symmetry (Mardia and Jupp, 2000). Confidence cones are similarly bipolar. Fisher et al. 
(1987) recommend the simpler Watson model in most cases. Confidence cones can be calculated for 
each of the three axes, giving elliptical cones.

Using these models, confidence cones can be drawn around either the mean direction (Fisher or Kent), 
or the eigenvectors (Watson or Bingham), at confidence levels of 90%, 95%, or 99%. Note that a 
minimum sample size of 25 is required for these, bootstrapping (Section 6.2) should be applied for 
sample sizes less than 25.

Figure 6.1 shows the directed paleomagnetic data from Figure 1.3 with a 95% confidence cone based 
on the Fisher distribution. Figure 6.2 shows the same data with a 95% confidence cone based on the 
Kent distribution.

Figure 6.3 shows 95% confidence cones using the Watson distribution for folded bedding data. Note 
that, because of the strong girdle pattern in this data, the semiapical angles of the confidence cone 
about the minimum eigenvector are small, while the maximum is strongly elliptical within the girdle. 
This shows that the minimum is well constrained, while the position of the maximum within the girdle 
is less well defined. Figure 6.4 shows similar confidence cones for ice crystallographic data. Figures 
6.5 and 6.6 show confidence cones based on the Bingham distribution for the same data sets. 

55

Figure 6.2 Paleomagnetic data as in Figure 
6.1 with 95% confidence cone based on a 
Kent distribution.

Figure 6.1 Schmidt plot of paleomagnetic 
data as in Figure 1.3 with 95% confidence 
cone based on a Fisher distribution, rotated to
the maximum vector mean. Upper 
hemisphere data shown as 30% opaque.



Data point weighting is implemented for Fisher, Kent, Watson, and Bingham confidence cones, but is 
not for bootstrap confidence cones (Section 6.3). Bootstrapping creates replicates by random selection, 
and assumes each data point is equally weighted.
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Figure 6.5 Plot as in Figure 6.3 with 95% 
confidence cones based on the Bingham 
distribution. 

Figure 6.6 Plot as in Figure 6.4 with 95% 
confidence cones based on the Bingham 
distribution.

Figure 6.3 Schmidt plot of poles to folded 
greywacke beds, as in Figure 4.15 with 95% 
confidence cones based on a Watson 
distribution about the maximum (red), 
intermediate (green), and minimum (blue) 
eigenvectors.

Figure 6.4 Ice crystallographic axes as in 
Figure 4.18 with 95% confidence cones 
based on the Watson distribution. Colors are 
as in Figure 6.3.



6.3 Bootstrapping

The models discussed in section 6.2 assume an underlying distribution model and require a minimum 
sample size of 25. An alternate method is to use bootstrapping to infer confidence regions about the 
mean. The data set is resampled numerous times and the mean calculated each time to give a large 
number of replicate means, which can be used to determine elliptical confidence regions (Fisher et al., 
1987; Mardia and Jupp, 2000; Figures 6.3 and 6.4). This approach is particularly useful for small 
samples (and is required for sample sizes less than 25), or where the underlying distribution model is 
not known. 

Bootstrapping requires creating a large number of replicates,  the default is 1000, with an allowed range
from 100 to 100,000. The means of the replicates can be displayed (Figures 6.8, 6.10) if desired. The 
process involves pseudorandom (mersenne twister) number generation, and the resulting confidence 
regions will vary slightly each time. Confidence results are presented in the Log window by the Data 

Statistics command, this displays the axis of the elliptical cone (a direction, which may differ from the 
mean), the semiapical angle of the rotationally symmetric (circular) cone, and the semiapical angles 
and directions of the major and minor semiaxes of the elliptical cone. 

Note that, while data point weighting is implemented for Fisher, Kent, Watson, and Bingham 
confidence cones (Section 6.2), it is not implemented for bootstrap confidence cones because 
bootstrapping creates replicates by random selection, and assumes each data point is equally weighted.

Figure 6.7 illustrates bootstrap confidence cones for folded graywacke bedding planes treated as 
undirected axes, Figure 6.8 shows an example of the bootstrap replicates used to calculate the cones. 
Figure 6.9 shows similar bootstrap cones for ice crystallographic data, with an example of replicates 
shown in Figure 6.6. While no underlying model is assumed, the confidence cones generated are 
comparable to those generated using the Watson distribution, as shown in Figures 6.3 and 6.4.
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Figure 6.7 Bedding data as in Figure 6.3 
with 95% confidence cones from 5000 
bootstrapped replicate means. This gives 
confidence cones similar to the Watson 
model in Figure 6.3.

Figure 6.8 Bedding data as in Figure 6.3 
showing the means of 5000 bootstrap 
replicates used to calculate the ellipses as in 
Figure 6.7.



The Log file generates a large number of results, however in most cases it is probably sufficient to 
report one or two mean values, either the vector mean for directed data, the maximum eigenvector for 
undirected data, or the minimum eigenvector for a girdle pole, along with a measure of uncertainty, 
such as the 95% symmetric cone semiapical angle. This confidence cone is plotted if the Circular 
option is selected for bootstrapping, the confidence cone is then calculated using the angular deviation 
from the mean, giving a circular confidence cone which encloses 95% of the replicate means. 
Examples are shown in Figure 6.11 of bedding data, in Figure 6.12 of ice crystallographic axes.
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Figure 6.9 Schmidt plot of ice c-axis data, as
in Figure 1.1, with bootstrapped elliptical 
confidence regions. This gives confidence 
cones similar to the Watson model in Figure 
6.2.

Figure 6.10 Plot of data as in Figure 6.9, 
with the means of 5000 bootstrap replicants 
on each of the eigenvectors.  



Figure 6.13 illustrates bootstrap analysis applied to directed data, magnetic remnant vectors. In this 
diagram the upper hemisphere is inverted on the left using the Invert about Y option. Figure 6.14 is a 
projection of the same data using a 30% transparent upper hemisphere, and Figure 6.15 shows the 
projection rotated to the vector mean to more clearly show the distribution. 
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Figure 6.11 Plot as Figure 6.7 showing 
symmetric 95% confidence cones about the 
maximum and minimum eigenvectors. The 
mean bedding as strike, dip is 172.29°, 
14.52° with 95% confidence of 26.72°. The 
mean fold axis as trend, plunge is 182.76°, 
2.69° with 95% confidence 4.61°.

Figure 6.12 Plot as in Figure 6.2 showing 
symmetric 95% confidence cones about the 
maximum and minimum eigenvectors. The 
mean axis as trend, plunge is 256.52°, 8.74° 
with 95% confidence of 13.74°. The mean 
girdle pole is 164.84°, 10.90° with 95% 
confidence 25.66°.

Figure 6.13 Schmidt plots (data inverted on left) of magnetic remanence data, an 
example of directed or vector data, from Figure 1.3 with the means of 5000 
bootstrap replicants on the mean vector. 



Figure 6.16 shows the replicate means used to calculate the confidence cones. Figure 6. shows the 
symmetric confidence cone generated with the Circular option. For comparison, the corresponding 
circular Fisher confidence cone is shown in Figure 6.14. 
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Figure 6.14 Magnetic data as in Figure 6.9 
with 95% bootstrap confidence cone about the 
mean, and 30% transparency of upper 
hemisphere.

Figure 6.15 Magnetic data as in Figure 6.10 
rotated to the vector mean. Compare this to 
the confidence cone generated using the Kent
distribution in Figure 6.2.



One final option is to display the confidence region using the Hull option, this displays the convex hull 
of all points that fall within the confidence region calculated using the angular deviations. Figure 6.18 
shows an example using undirected crystallographic data and centered on the maximum eigenvector. 
Figure 6.19 is an example using directed magnetic data centered on the vector mean.
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Figure 6.19 Magnetic data rotated to the 
vector mean as in Figure 6.11 with 95% 
bootstrap confidence region. The polygonal 
hull encloses 95% of the replicate means 
sorted by distance from the mean.

Figure 6.18 Ice crystallographic data as in 
Figure 6.5 centered on the maximum 
eigenvector with bootstrap 95% confidence 
region. The polygonal hull encloses 95% of 
the replicate means sorted by distance from 
the maximum.

Figure 6.17 Magnetic data as in Figure 6.16 
with circular bootstrap confidence cone. The 
vector mean as trend, plunge is 315.78°, 
-8.65° with 95% confidence 13.84°. This 
gives similar confidence cones as the Fisher 
model shown in Figure 6.1.

Figure 6.16 Magnetic data as in Figure 6.9 
with 5000 bootstrap replicate means 
displayed. A set of such means is used to 
calculate the confidence cone.



7. Conical Data and Small Circles

7.1 Introduction

This chapter concerns two distinctly different topics, data that is entered as a direction and an angle, 
and data that can be fitted to a cone.. An example of the first are drill core data from cores that 
penetrate layers at a measured angle. Each data point is characterized by three angles (θ, φ, α), where θ,
φ give the direction (e.g., trend and plunge) of the core, and α is the half apex, or semiapical, angle 
defining the circular cone. 

The second topic, fitting to a cone, is most commonly applied to fitting bedding or foliation data to a 
conical fold. Folds are treated as approximately cylindrical when possible (Badgley, 1959; Turner and 
Weiss, 1963; Whitten, 1966; Ramsay, 1967; Hobbs et al., 1976), however non-cylindrical folds are 
common in nature, and conical folds are an alternate model that may be applicable in some locations 
(Wilson, 1967; Kelker and Langenberg, 1982).

A tutorial on data point weighting is included in this chapter as well, using the example of fitting a 
small circle. The weighting of individual points applies to other plots and calculations, such as circular 
plots and kinematic analysis, but the fitting of small circles provides a useful example for visualization.

7.2 Conical Data 

Data that are characterized by both a direction and an angle define a cone, which projects as a small 
circle on a spherical projection. In exploration geology it is common to drill a core to determine rock 
composition and structure. If the core intersects a plane of interest, such as a bedding plane, the angle 
between the core with orientation (θ, φ), and the plane gives a core-plane angle, α, defining the cone (θ,
φ, α). When the core is extracted the orientation of the plane is lost, however it must lie tangent to the 
cone (θ, φ, α). 

This is one of a class of geometric problems that are commonly solved using a stereographic net, or 
stereonet (Bucher, 1944; Phillips, 1954; Donn and Shimer, 1958; Badgley, 1959; Lisle and Leyshorn, 
2004; Ragan, 2009). An advantage of the stereographic projection is that, because of its equal-angle 
property, small circles project as circular arcs (Section 4.4), and can be constructed using a compass. 
Unless this equal-angle property is required, such problems can also be solved using a Schmidt net.

Orient allows such conical data to be entered and will plot small circles, avoiding manual construction, 
and aiding in the visualization and solution of drill hole problems. The direction of the drill core  (θ, φ) 
is typically given by its trend and plunge, enter these, and then the half apex (semiapical) angle α in the
spreadsheet column Alpha. Use the View Data Columns command to display the column if not visible.

As an example, Table 7.1 gives the orientations of three drill cores with core-plane angles of bedding 
planes (from Ragan, 2009), the problem is to determine the bedding plane orientation.
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ID Trend Plunge Alpha

1 0 60 51

2 270 50 67

3 45 55 38

Table 7.1 Example drill core data (from Ragan, 2009). Given the trend and plunge of three drill cores, and the 
core-plane angle α (Alpha) of bedding planes, determine the orientation (strike and dip) of the bedding.

To solve the problem, open a new data sheet in Orient, and display a projection using the Graph 

Spherical Projection command. In the Symbols pane of the Preferences dialog, check Small Circle.

Use the View Data Columns command to display the Alpha column if not visible, and enter the data 
from Table 7.1. The resulting Schmidt plot is shown in Figure 7.1, and lower-hemisphere stereographic 
projection (stereogram) in Figure 7.2. The three cones intersect at a single point, which represents the 
bedding plane orientation. Use the mouse to determine the solution on either projection. The bedding 
normal trend, plunge is TP  = 120°, 60°, and the plane strike dip is SD = 210°, 30°. While an analytical 
solution can be calculated (Ragan, 2009), a visualization of the solution is desirable, and precision to 
less than a degree unlikely to be required.

7.3 Fitting Small Circles

In some cases it may be required to fit directional data to a cone. The most common case in geology is 
to determine the best fit axis, λ (a vector, specified, for example, by trend and plunge), and half apex 
(semiapical) angle, ψ, of conical folds. The most common model for folds is cylindrical, however the 
alternate model of conical folds may be useful in some cases (Wilson, 1967; Gray et al., 1980; Kelker 
and Langenberg, 1982, 1988; Mulchrone et al., 2013).
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Figure 7.1 Schmidt plot of drill core data 
from Table 7.1 showing cones defined by the 
core-plane angles. The solution is the 
intersection of the three cones.

Figure 7.2 Lower hemisphere stereographic 
projection, or stereogram, of data as in Figure
7.1. Either projection can be used to find the 
solution.



This may also be viewed as a general model for fitting vector data to great or small circles, since great 
circles are given by ψ = 90°. Note that the data (θi, φi) are treated as directed (vector) data, if these are 
bedding measurements, any overturned beds should be entered using negative dips (θ + 180°, -φ). 

The problem, given a data sample (θi, φi), find the cone (λ,  ψ), which can be formulated by minimizing
the sum of either the distance or angular residuals, requires an iterative solution (Mardia and Gadsden, 
1977; Gray et al., 1980; Mancktelow, 1981; Fisher et al., 1987; Mulchrone et al., 2013). The fitting 
method used here follows Fisher et al. (1987) after Mardia and Gadsden (1977) with modifications 
(Vollmer, in preparation).

Figure 7.3 is a Schmidt plot of data from an area of cylindrical folding in Australia (Cohen, 1983, from 
Fisher, 1987; example data file Cohen 1983). The fitted cone is (λ,  ψ) = (3.23°, 18.38°, 76.19°) given 
as azimuth, declination, semiapical angle. Figure 7.4 shows the folded graywacke bedding data with the
best fit small circle (λ,  ψ) = (183.63°, 8.09°, 85.57°), very close to the great circle (ψ = 90°) shown in 
Figure 4.15.

7.4 Small Circle Confidence

The method for fitting a small circle can be extended to estimate confidence regions by using 
bootstrapping methods similar to that discussed in Section 6.3 (Fisher et al., 1987). A large number of 
estimates of the mean are calculated from resampled replicates, and used to estimate confidence 
regions. Figure 7.5 shows the 95% confidence for the cone axis of the fold data in Figure 7.3 calculated
using 1000 replicates, and Figure 7.6 shows the data rotated to the cone axis, and the means of 1000 
replicates.
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Figure 7.4 Schmidt plot of folded graywacke
bedding data from Figure 4.15 with best fit 
small circle. Compare with Figure 4.16, 
which shows the best fit great circle.

Figure 7.3 Schmidt plot of 155 facing 
directions of conically folded planes to a 
small circle. Data from Cohen (1983), in 
Fisher et al. (1987).



If the Circular option is selected, the confidence cone is calculated using only the angular distance, 
producing a circular cone. In this case it is possible to draw confidence rings about the best fit small 
circle by checking the Ring option. Figure 7.7 shows the conical fold data with a circular confidence 
cone and small circle confidence rings, Figure 7.8 is a plot rotated to the small circle axis.
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Figure 7.5 Plot of conical fold data as in 
Figure 7.3 with 95% bootstrap confidence 
cone.

Figure 7.6 Plot of conical fold data as in 
Figure 7.4, rotated to the best fit cone axis, 
with means of 1000 bootstrap replicates used 
to calculate the confidence ellipse as in 
Figure 7.5.

Figure 7.7 Conical fold data as in Figure 7.3 
displayed with 95% circular confidence cone 
and small circle confidence rings. The best fit
small circle is (λ,  ψ) = (3.23°, 18.38°, 
76.19°) with 95% confidence about (λ,  ψ) as 
(3.10°, 2.39°).

Figure 7.8 Plot of conical fold data as in 
Figure 7.7 rotated to the small circle axis.



Figure 7.9 is a Schmidt plot of the folded graywacke beds from Figure 4.15 with 95% circular 
confidence cones and small circle confidence rings. The best fit small circle is (λ,  ψ) = (183.63°, 8.09°,
85.95°) with 95% confidence about (λ,  ψ) estimated as (7.04°, 11.91°). Figure 7.10 shows the same 
data rotated to the small circle axis. Note that the axis is calculated with the bedding data as vectors, 
even if they are displayed as axes with the Symbols panel Directed option unchecked. From Figure 
7.10 it is clear that one of the 95% confidence includes the plane normal to the axis, that is, ψ (85.95°) 
plus the confidence estimate on ψ (11.91°) is greater than 90°. Figure 7.11 shows the same data with 
the symmetrical confidence cone for the minimum eigenvector, the standard method for determining 
the axis of a cylindrical fold.

Due to the long processing time required for the small circle fitting algorithm, bootstrap statistics are 
not calculated in the Log window unless either the bootstrap Cone, Hull, or Replicates options are on 
(e.g, Figures 7.5 to 7.12). Increasing the number of replicates can cause the calculation to take a very 
long time, depending on your processor speed, 1000 resamples should only take a few seconds 
however. 
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Figure 7.9 Schmidt plot of folded graywacke
beds from Figure 4.14 with 95% circular 
confidence cones and small circle confidence
rings. The best fit small circle is (λ,  ψ) = 
(183.63°, 8.09°, 85.95°) with 95% 
confidence on (λ,  ψ) estimated as (7.04°, 
11.91°).

Figure 7.10 Plot as in Figure 7.9 rotated to 
the fitted small circle axis. Note that 
confidence rings on ψ include the plane 
normal to the axis.



7.5 Tutorial 9 - Data Point Weighting

As noted in Section 2.4, individual data points can be weighted. While this applies to all calculations 
(except bootstrap confidence cones), including circular plots and kinematic analysis, the fitting of a 
small circle gives a good visualization of the effect of weighting a data point. 

Make the Weight column visible by using the View Data Columns command if necessary. Select Small 

Circle in the Preferences dialog Maxima pane, and enter the following data. The Schmidt plot should 
appear as Figure 7.13.

ID Trend Plunge Weight

1 30 60

2 60 20

3 120 60

4 180 60

5 270 60

Table 7.2 Example data to illustrate data point weighting.
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Figure 7.11 Plot as in Figure 7.9 with the 
minimum eigenvector, its pole, and 95% 
circular confidence region displayed (blue), 
the standard method for determining a 
cylindrical fold axis. 

Figure 7.12 Plot as in Figure 11, but using 
lower hemisphere orthographic projection 
and visualization techniques discussed in 
Section 5.6.



Enter 5 in the Weight column for data point 2, this data point now counts the same as 5 points, shifting 
the small circle towards it (Figure 7.14). Finally, enter 0 for the weight of data point 2, it is now not 
included in the calculation and has no effect as shown in Figure 7.15.
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Figure 7.13 Schmidt plot of data from Table 
7.2 with fitted small circle to illustrate data 
point weighting.

Figure 7.14 Data as in Figure 7.6 with a 
weight of 5 entered for data point 2. Data 
point 2 now counts the same as 5 points, 
shifting the small circle towards it. 

Figure 7.15 Example data as in Figure 7.6 
with a weight of 0 entered for data point 2. 
Data point 2 is now discounted, with no 
effect on the small circle calculation. 



8. Kinematic Analysis

8.1 Introduction

Some data comprise planes that contain lines. These data may indicate movement along faults or shear 
directions, such as striae on slickenside surfaces. Other data, such as hinge lines in fold axial planes, or 
current directions in bedding planes, also have that characteristic, however this section deals only with 
the kinematic analysis of faults and shear zones. Numerous methods exist for the determination of 
stresses, strains, or displacements from populations of faults, Orient implements a kinematic analysis 
based on M-plane, or movement plane, geometry (Angelier, 1979;  Marshak  and Mitra, 1988; Twiss 
and Unruh, 1998; Marrett and Allmendinger, 1990; Twiss and Moores, 2007).

8.2 Entering Line-Plane Pairs

Kinematic analysis requires entering plane-line pairs, as each data point includes both a plane, such as a
fault plane, and a directed line contained in that plane, such as a fault striation. Data is commonly 
entered as strike, dip, trend, plunge, however it is also possible to enter strike, dip and just one of the 
three values trend, plunge, or rake. and have Orient calculate the other values. Given the strike and dip 
of a plane, only a single additional angle is required to completely specify the orientation of the 
contained line.

Three additional columns are provided for kinematic analysis, Sense, Rake, and Error, and an 
additional command, Calculate Lines, is provided to calculate missing values, or to recalculate existing 
values exactly. Use the View Data Columns command to set these columns visible. The Sense column 
is used to indicate if the fault has a normal or reverse component (it is also possible to enter negative 
values for the plunge of reverse faults, and add 180° to the trend). The Rake column is for the positive 
(clockwise) angle between the strike of the plane and the striation direction, this will be from 0° to 
180°, and is positive for faults with a normal component, and negative for faults with a reverse 
component. 

The Error column is read only, and contains the calculated angular error between the plane and its 
contained line. A common problem with field data is that it is over constrained, only three angles are 
required for plane-line pairs, while four are often measured. The Calculate Line command is used to 
calculate, or recalculate line-plane pairs.

Given the orientation of a plane and one of the angles trend (or other horizontal angle), or rake (or 
pitch), the other two can be calculated using the Calculate Line command. The resulting line-plane pair 
will have a 0° angular mismatch error.

8.3 Orthonomalization

If both the plane and line have been measured directly, then the line-plane pair is over-constrained with 
a mismatch error (Davis et al., 2015). In this case the Error column will contain a non-zero angular 
value. The Calculate Line command has two options to recalculate the line-plane pair and remove the 
angular error. The Projection option recalculates the line as its projection on the plane. The 
Orthonormalize option recalculates both the line and the plane to create a normalized orthogonal frame.

Given over-constrained data, the selection of the Calculate Line option requires judgement of the 
source of measurement error. The angular errors should be checked first, any data point with a large 
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error should be discarded or corrected. It is common that the plane is easier to measure accurately than 
the contained line, if so, the Projection option is the best. The Orthonormalize option will modify both, 
and is better if no assumption is made about the source of error. Alternatively, the line-plane data can be
corrected using the trend, plunge, or rake, possibly taking into account the dip. Note that potential 
measurement errors depend on the orientation of the line or plane, for example, the likely error in the 
strike of a plane increases with decreasing dip (Ragan, 2009). 

8.4 M-Planes

Each data point for kinematic analysis must include the orientation of a kinematic plane, such as the 
strike and dip of a fault plane, and the orientation of a movement direction in that plane, such as the 
trend and plunge of a fault striation, signifying the motion of the hanging wall (upper) block. Upward 
directed vectors, with a reverse component, can be entered using negative plunges, or by entering 
Reverse (r) in the Sense column. Note that this is equivalent to adding 180° to the trend, and 
multiplying the plunge by -1. Normal (n) may also be entered into the Sense column, but has no effect. 

Although the term fault is used here, the kinematic analysis can be applied to shear zones if the 
displacement directions can be determined. As the slip lineation lies within the fault plane, the 
displacement direction must lie in the plane containing the lineation and the pole to the fault, this plane 
is the M-plane. Figure 8.1 shows the geometric relationships with the M-plane shown in gray.

Two additional kinematic axes can be defined within the M-plane, at ±45° from the lineation (Figure 
8.1). These are commonly referred to to as the P-axis and T-axis, terms derived from first motion 
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Figure 8.1 Schmidt plot of a normal fault, with 
a slip lineation (red), pole to the fault (blue) and
the M-axis, or movement axis, (green), the M-
plane is shown in gray. Directions P and T 
bisect the angle between the pole and slip line. 
Arrows are tangent lines that show the 
displacement sense of the hanging wall with 
respect to the footwall.



studies in seismology, however they should not be confused with stress axes. Rather P is an incremental
shortening axis, and T is an extension axis. 

The arrows drawn though the lineation and the fault normal are tangent lines, directed lines tangent to a
projected point on a sphere. In Figure 8.1 tangent lines are drawn through the lineation and the fault 
pole projections to show the placement sense of the hanging wall with respect to the footwall. They can
be viewed as instantaneous rotation vectors about the M-axis. The term slip-linear has been used for a 
tangent line drawn through the fault pole using this reference frame (Marshak and Mitra, 1988). Figure 
8.2 shows a slip-linear diagram of a population of 38 Neogene normal faults from central Crete, Greece
(data from Angelier, 1979).

The term tangent-lineation has been used for the tangent line drawn through the fault pole showing the 
placement sense of the footwall with respect to the hanging wall (Twiss and Unruh, 1998; Twiss and 
Moores, 2007). However, the reference frame used in Figures 8.1 and 8.2 for slip-linears is compatible 
with the definition of fault slip as a displacement vector of the hanging wall with respect to the 
footwall, and has priority, so is the default setting. Since Orient offers both conventions, the term pole 
tangent line (tangent line through the projected fault pole) is used to include both slip-linear and 
tangent-lineation reference frames.

A second type of tangent line can be drawn through the slip lineation within in the M-plane. This is 
referred to here as a slip tangent line (tangent line through the projected slip line), drawn though the 
projected lineation towards, or away from, the pole to the fault (Figure 8.1). This contains the same 
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Figure 8.3 A lower hemisphere equal-area slip
tangent line diagram of the data shown in 
Figure 8.2. The arrows through the slip 
lineation projections show the displacement 
sense of the hanging wall with respect to the 
footwall (data from Angelier, 1979).

Figure 8.2 A lower hemisphere equal-area slip-
linear, or pole tangent line, diagram of a 
population of 38 Neogene normal faults from 
central Crete, Greece. The arrows through the 
fault pole projections show the displacement 
sense of the hanging wall with respect to the 
footwall (data from Angelier, 1979).



information as a pole tangent line. Note that many spherical projections of fault data in the literature 
show ticks or arrows parallel to the trend of the slip lineation, which is not the same.

8.5 Moment Tensors

The P and T axes (Figure 8.1) indicate shortening and extension axes respectively, and fault kinematic 
analysis can therefore done by examining populations of P and T axes independently using moment 
tensors (Marrett and Allmendinger, 1990). These tensors are orientation matrixes discussed in Sections 
4.7. When fault data is entered, normally a strike and dip for a fault plane, and a trend and plunge for a 
slip lineation, Orient automatically generates M-planes, P-axes, and T-axes. An extension is added to 
the data type indicate each of the five data elements (Table 8.1).

Data Type Extension Data Element

.S Plane, fault, slickenside, or shear plane

.L Line, slip direction, slickenline, or shear direction

.M M movement plane

.P P shortening axis

.T T extension axis

Table 8.1 Data type extensions automatically generated for kinematic data.

Each of these extended data types can be plotted and analyzed independently. For kinematic analysis 
the P and T axes are contoured (Figures 8.5 and 8.6; Section 4.9), and their maximum values and 
scatter determined by eigenvector analysis (Section 4.7), and for the construction of beachball plots 
(Figure 8.7). 
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Figure 8.4 Lower hemisphere equal-area 
projection of poles to M-planes (green), P 
shortening axes (red), and T extension axes 
(blue) for data in Figure 5.2.
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Figure 8.5 Schmidt plot with modified Kamb
multiples of uniform density contours on the 
P shortening axes of the fault data from 
Figure 8.3.

Figure 8.6 Projection as in Figure 8.4 with 
contours on the T extension axes. 

Figure 8.7 Lower hemisphere equal-area 
beachball plot showing the P shortening and 
T extension quadrants using the data shown 
in Figure 8.3.



8.6 Tutorial 10 – Kinematic Analysis

Open the file Angelier 1979 from the Example Data folder (any of the csv, tsv. ods, or xlsx versions) in 
Orient, and click on the Spherical Projection icon. If no settings have been previously modified the 
projection will look as in Figure 8.8. The Help Restore Defaults command can be used to reset the 
preferences if desired.

To remove the Schmidt net from the background, click on the Preferences icon, and locate the Net 
pane under the Spherical Projection Settings. Uncheck both Axes and Net. Next, in the Labels pane, 
change the Increment to -90, the Offset to 14, and the Size to 12. 

Next, go to the Symbols pane. Note that there are 5 data types displayed in the Data Type pulldown list.
Select SL.P, check Visible, then select SL.T and check Visible. At this point all data type elements 
should be displayed with a symbol as in Figure 8.9.

The first step is to prepare a pole tangent line, or slip-linear, plot. In the Symbols pane uncheck Visible 
for all the elements except SL.S so only the poles to the fault planes are displayed. Now go to the 
Kinematics pane and check Tangent Lines. The resulting plot is shown in Figure 8.2.

Next prepare modified Kamb contour plots of the P shortening and T extension axes. Uncheck Tangent 

Lines in the Kinematics pane, and open the Symbols pane. Uncheck Visible for SL.S. For SL.P,  check 
the following: Visible, Symbol, Contour, and Gradient. Modify the defaults as follows. Set the Symbol 
Fill Color to white, and the Symbol Size to 6. Click on the gradient color picker, and select YR (yellow 
red) from Preset. Next go to the Contours pane and set Levels to 5 to give modified Kamb contours at 
20% density. The resulting plot is shown in Figures 8.10. 
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Figure 8.8 Lower hemisphere equal-area 
scatter plot of fault data in Figure 8.3 showing 
fault normals (white), slip lines (red), and M-
planes (green), with Schmidt net.

Figure 8.9 Projection as in Figure 5.7 after 
turning off display of the Schmidt net, and 
showing the P shortening (magenta) and T 
extension (cyan) axes.



To prepare a contour plot for the T extension data, uncheck Visible for SL.P. For SL.T,  check: Visible, 
Symbol, Contour, and Gradient. Set the Symbol Fill Color to white, and the Symbol Size to 6. Click on 
the gradient color picker, and select CB (cyan blue) from Preset. The resulting plot is shown in Figure 
8.11.

Finally, to prepare a beachball plot, uncheck the SL.T options for Contour and Gradient, and set the 
Symbol Fill Color to cyan. For SL.P, check Visible, uncheck Contour and Gradient, and set the Symbol 

Fill Color to red. In the Kinematics pane check Beachball. The resulting plot is shown in Figure 8.7.

8.7 Confidence Levels, Synoptic Plots, and Weighting

This section explains the use of additional options, including determining confidence cones, using the 
same example fault plane data set as in previous sections. Following Section 8.3, note that the line-
plane data should be adjusted to insure that each line-plane pair form an orthogonal frame. This is 
easily done by selecting all the data with Edit Select All, and then Data Calculate Line with the 
Orthonormalize option. Other options are discussed fully in Section 8.3.

It may be desirable to produce a contoured summary, or synoptic, plot of both the P and T axes. Figure 
8.12 is a such a diagram with combined contours as displayed in Figures 8.10 and 8.11. Both the P and 
T axes have contours and gradients (Symbols Contour and Symbols Gradient selected), with the 
Contours Fill Contours option selected, and Gradient set to Gray. Contours Levels is set to 5 to give 
contours at 20%.

Note that the P gradient obscures the T gradient because both are opaque, and the P gradient bitmap is 
on top of the T gradient bitmap. To fix this, click on the P Gradient Picker, and set the opacity to 50%. 
The result is an overlay as shown in Figure 8.13. The use of overlays can be similarly applied to any 
plot with multiple data types, such as bedding and cleavage. 
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Figure 8.11 Projection as in Figure 8.10 with
contours of the T extension axes.Figure 8.10 Lower hemisphere equal-area 

modified Kamb contour plot of the fault data 
from Figure 8.3 with 20% density contours 
of the P shortening axes.



The bootstrapping technique discussed in Section 6.3 can be applied to kinematic analysis to derive 
confidence intervals about the P and T axis. Figure 8.14 shows the confidence intervals as elliptical 
cones about both P and T axes, and Figure 8.15 shows 5000 means of the bootstrap replicants used to 
calculate the cones. The confidence values are displayed in the Log window after running the Data 

Statistics command. Locate the maximum eigenvectors for the P and T data elements in the log, these 
give the 95% confidence radii for the P axis as 7.59°, 6.32°, and for the T axis as 9.87°, 7.99° (Figure 
8.14; these will vary randomly a small amount). Points defining endpoints of the long and short ellipse 
axes are also given.
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Figure 8.13 Schmidt plot as in Figure 8.12 
with the P contour gradient transparency set 
to 50%, to create a transparent overlay. 

Figure 8.12 Schmidt plot of P and T axes as 
in Figure 8.9 with modified Kamb contours 
for each at 20%. The Gradient option is 
selected for each, but only one is displayed.



Finally, as discussed in Sections 2.4 and 7.4, individual data points can be weighted by entering a 
positive value in the Weight column. The default weight is 1, a weight of 0 will discount the data point. 
In kinematic analysis it may be desirable to weight data points, for example by using a weight related 
to the estimated area of a fault. 

To see the effect of data weighting on kinematic analysis, make the Weight column visible using the 
View Data Columns command if necessary, then use the Angelier 1979 data set to create a plot such as 
shown in Figure 8.13. Enter weight values, such as 0, 2, or 10 for some of the line-plane pairs to see the
effect on the analysis.
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Figure 8.14 Schmidt plot as in Figure 8.12 
with 95% confidence cones about the P and T
axes. 

Figure 8.15 Schmidt plot as in Figure 8.14 
displaying the means of 5000 bootstrap 
replicates used to calculate the confidence 
cones.



9. Orientation Plots

9.1 Introduction

The orientation matrix, orientation tensor, or scatter matrix (Fisher, Lewis, and Embleton, 1987; 
Mardia and Jupp, 2000), can be interpreted as a moment tensor associated with the spherical 
distribution of axial direction data, by regarding the intersection points of each axis with the sphere as 
unit masses. Such a weighted sphere would have three perpendicular moment axes. Section 4.3 showed
how the eigenvectors of this tensor can be used to determine the maximum, intermediate, and minimum
directions. The eigenvectors, however, have relative magnitudes, the eigenvalues, which are treated in 
this chapter. Note, for example, that if are three eigenvalues are all equal, there is no preferred direction
and the measurements are randomly, or uniformly, distributed.

9.2 Triangular Orientation Plot

A triangular eigenvalue plot (Point Girdle Random) is particularly useful when a summary diagram is 
required of numerous data sets. On the triangular plot a single point summarizes the type of directional 
data distribution among point (or cluster), girdle, and random (or uniform) distributions. The plot is 
also used in map domain analysis, where domains are defined in the Orientation Map portion of the 
program, by maximizing the total cylindricity index.

Given the orientation matrix eigenvectors ε1, ε2, and ε3 for n data points, where the magnitudes ε1 ≥ ε2 

≥ ε3, the following are defined (Vollmer 1989):

Point P = (ε1 - ε2)/n

Girdle G = 2(ε2 - ε3)/n

Random R = 3ε3/n

Cylindricity C = P + G

these have the property that:

P + G + R = 1

and form the basis of the triangular plot. Cylindrical data sets plot near the top of the graph, along the 
P-G join, point distributions plot near the upper left (P), girdle distributions plot near the upper right 
(G), and random or uniformly distributed data will plot near the bottom of the graph (R). Figure 9.1 is a
plot of bedding plane poles from a cylindrical fold in Ordovician graywackes (Vollmer, 1981), and 
Figure 9.2 is the corresponding triangular plot graph. These indicate a well defined girdle with a 
distinct maximum.
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A contour plot of ice fabric c-axes (Kamb, 1959) is shown in Figure 9.3, which shows a much more 
scattered distribution, and plots nearer to the bottom of the plot (Figure 9.4). Finally a plot of fold axes 
associated with the bedding data in Figure 4.15 is shown in Figure 9.5, and the associated triangular 
plot in Figure 9.6 showing a strong point cluster.
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Figure 9.1 Schmidt plot with modified 
Kamb contours of poles to bedding from a 
fold in graywackes (data from Vollmer, 
1981).

Figure 9.3 Schmidt plot with modified Kamb 
contours of ice c-axes (data from Kamb, 
1959).

Figure 9.4 Triangular orientation plot of data 
shown in Figure 9.3.

Figure 9.2 Triangular orientation plot of data
shown in Figure 9.1.
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Figure 9.5 Schmidt plot with modified Kamb 
contours of minor fold axes associated with the
folded bedding data in Figure 4.12.

Figure 9.6 Triangular orientation plot of 
fold axis data in Figure 9.6 showing strong 
point cluster.



10. Cluster Analysis

10.1 Introduction

Many directional data samples are multimodal, and, while contouring (Section 4.9) may be sufficient to
locate likely modes (e.g., Schmidt, 1925; Section 4.9), it may be desirable to use numerical techniques 
to partition the sample into discrete clusters (e.g., Press et al., 2007). One application is from geological
fracture analysis, in which the orientations of fracture or joint planes are measured, with no basis other 
than orientation to use for subdividing the sample. This chapter discusses methods to attempt to 
partition such multimodal samples into clusters or cluster domains.

Visual cluster analysis of directional data began with the work of Schmidt (1925), who used contouring
to identify modes, or deviations from uniformity. Shanley and Mahtab (1976) used a Schmidt 
projection based counting method to identify clusters. Klose et al. (2005) give a summary of other 
work, and present a numerical minimization method. The approach used here differs significantly from 
that of Klose et al. (2005), however similarly attempts to locate a solution that minimizes residuals of a 
measure of distance from the cluster centers (centroids). The present method allows weighting of data 
points, and is implemented for vector, axis, and girdle distributions (Vollmer, in preparation; see Yamaji
and Sati, 2011, for a related method).

The method requires selecting the number of clusters, the cluster count, from k = 2 to 9. This will be 
based on user expertise, either through theoretical expectation, or by examination of a contour plot. 
Minimization may not converge to a unique solution for distributions that do not have distinct modes, 
or where the number of modes is less than the input cluster count. The method selected, Axis, Vector, or
Girdle controls the minimization procedure. Data display for symbols and maxima should be selected 
to correspond to the method, and set as either directed or undirected.  

10.2 Axis Cluster Partitioning

Figure 10.1 is a Schmidt plot of ice crystallographic data as in Figure 4.18, after cluster partitioning 
with two clusters. The two modes initially identified by contouring are clearly selected by the 
partitioning method, although due to asymmetry, the axes are not precisely aligned with the contoured 
maxima.

The clusters can be visualized more clearly by rotating the projections to the maximum eigenvectors of 
the two cluster domains. Figure 10.2 shows the data rotated to the maximum of cluster domain 1 
(yellow symbols), and Figure 10.3 shows the data rotated to the maximum of cluster domain 2 (green 
symbols). Two distinct maxima are indicated by contouring the cluster domains, and by bootstrap 
confidence cones. Figure 10.4 is a triangular orientation plot summarizing the change in fabric type 
following partitioning, with the two domains plotting closer to the point, or cluster, vertex than the total
data set (red symbol).

The total data set maximum eigenvector (red symbols in Figures 10.4 and 10.5) as trend, plunge, 95% 
confidence is (256.52°, 8.74°, 13.63°), cluster domain 1 (yellow in Figure 10.1) is (58.95°, 36.91°, 
10.19°), and cluster domain 2 (green in Figure 10.1) is (261.17°, 28.23°, 8.98°).
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Figure 10.5 illustrates a similar analysis on the folded graywacke bedding data displayed in Figure 
4.15. In this case there is a reasonable expectation to find two modes, corresponding to the two the fold 
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Figure 10.1 Schmidt plot of ice 
crystallographic data as in Figure 4.18, after 
cluster partitioning with two clusters. 20% 
modified Kamb contours on full data set, and
95% symmetric confidence intervals on the 
two cluster axes.

Figure 10.2 Plot as in Figure 10.1, rotated to 
the maximum of cluster domain 1, with 
contours on cluster domain 1.

Figure 10.3 Plot as in Figure 10.1 rotated to 
the maximum of cluster domain 2, with 
contours on cluster domain 2.

Figure 10.4 Triangular orientation plot, 
showing the  full data set (red symbol), 
cluster domain 1 (yellow), and domain 2 
(green). Note that the axis domain clusters 
plot closer to the point, or cluster, vertex.



limbs. Figure 10.6 shows the data rotated to the maximum of cluster domain 1, and Figure 10.7 shows 
the data rotated to the maximum of cluster domain 2. As expected, two distinct maxima are indicated 
by contouring the cluster domains, and by the confidence cones. Figure 10.8 is a triangular orientation 
plot summarizing the change in fabric type following partitioning. Note again, that the cluster domains 
plot closer to the point, or cluster, vertex than the full data set.

The axis cluster partitioning gives the two clusters (estimated fold limbs) as strike, dip, 95% confidence
equal to (4.10°, 58.79°, 11.84°) for cluster domain 1 (yellow symbols in Figure 10.5), and (180.05°, 
23.54°, 6.06°) for cluster domain 2 (green symbols in Figure 10.5). 
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Figure 10.5 Schmidt plot of folded 
graywacke bedding data as in Figure 4.15, 
with 20% modified Kamb contours on the 
full data set, and 95% symmetrical 
confidence intervals on the two cluster axes. 

Figure 10.6 Plot as in Figure 10.5 rotated to 
cluster domain 1 maximum, with contours on
cluster domain 1. 



10.3 Vector Cluster Partitioning

An analysis similar to axis cluster partitioning can be done on vector data. Figure 10.9 is a Schmidt plot
of the magnetic remanence data from Figure 1.3, after vector cluster partitioning. Data ploted on the 
upper hemisphere are semi-transparent. Figure 10.10 shows the data rotated to the vector mean of 
cluster domain 1, and Figure 10.11 shows the data rotated to the vector mean of cluster domain 2. 

The two clusters given as [trend, plunge, 95% confidence] are (224.39°, 42.41°, 15.63°) for cluster 
domain 1 (yellow symbols in Figure 10.9), and (333.87, -23.13, 7.37) for cluster domain 2 (green 
symbols in Figure 10.9).
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Figure 10.7 Plot as in Figure 10.5 rotated to 
domain 2 cluster axis, with contours on 
cluster domain 2.

Figure 10.8 Triangular orientation plot, with 
full data set (red symbol), cluster domain 1 
(yellow), and domain 2 (green). Note that the
domains (estimated fold axes) plot closer to 
the point, or cluster, vertex than the full data 
set. 
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Figure 10.9 Schmidt plot of magnetic 
remanence vectors as in Figure 1.3, after 
vector cluster partitioning. 20% modified 
Kamb contours on the full data set, and 95% 
symmetric confidence intervals on the cluster
domain vector means. Symbols on upper 
hemisphere are 30% transparent. 

Figure 10.10 Plot as in Figure 10.9 rotated to
the vector mean of cluster domain 1 (yellow 
symbols), with contours on cluster domain 1. 

Figure 10.11 Plot as in Figure 10.9 rotated to
the vector mean of cluster domain 2 (green 
symbols), with contours on cluster domain 1 



10.4 Girdle Cluster Partitioning

This section concerns girdle cluster partitioning, where an attempt is made to partition more than one 
girdle distribution from a sample. A synthetic test example is shown in Figure 10.12, produced by 
combining the data from Figure 10.5 with the same data rotated 30° about the Z (vertical) axis . The 
best-fit great circles with confidence cones illustrate the effect of the partitioning. To more clearly 
visualize the partitioning, Figure 10.13 shows the data rotated to the maximum eigenvector of cluster 
domain 1, with contours on domain 1, and Figure 10.14 shows the data rotated to the maximum 
eigenvector of cluster domain 2, with contours on domain 2.

The minimum eigenvector (estimated cylindrical fold axis) of the original data as trend, plunge, 95% 
confidence was (182.76°, 2.69°, 4.70°) (Figure 6.7). The combined synthetic data after girdle cluster 
partitioning gives the domain 1 axis as (187.38°, 3.38°, 1.88°), and domain 2 axis as (153.83°, 2.45°, 
4.29°). Rotating domain 2 by -30° about Z gives the (restored) axis (183.8° 2.5°, 4.29°). Note that the 
girdle cluster analysis has largely partitioned the combined data into the two original components, a 
complete restoration can not be expected. Finally, Figure 10.15 is a visualization of the cluster analysis 
results using methods discussed in Section 5.6.
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Figure 10.12 Girdle partitioning of synthetic 
data produced by combining the data from 
Figure 10.5 with the same data rotated 30° 
about Z. 20% modified Kamb contours on 
the full data set. 

Figure 10.13 Plot as in Figure 10.12 rotated 
to the maximum eigenvector of girdle 
domain 1, with contours on domain 1.
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Figure 10.14 Plot as in Figure 10.12 rotated 
to the maximum eigenvector of girdle 
domain 2, with contours on domain 2.

Figure 10.15 Plot as in Figure 10.12 using 
orthographic projection, rotation, and 
transparency as discussed in Section 5.6.



11. Orientation Maps

11.1 Introduction

Spherical projections aid in the analysis of the directional data, such as rock foliations, but they do not 
display their spacial distribution. Understanding the spacial relationships of directional data is often one
of the primary goals of a geologist, particularly a structural geologist. A number of tools are provided in
Orient to assist with spacial analysis. These include coordinate conversions, integration with mapping 
websites, and integration with Google Earth. Orient is designed to plot the spacial distributions of 
directional data, and has the capability of calculating orientation data fields that can be used to study 
regional tends and to do structural domain analysis. For example, a common problem in mapping areas 
of complex geological structure is to identify domains of cylindrical folding. Orient provides unique 
capabilities to automatically search for such domains (Vollmer, 1990).

11.2 UTM, Latitude, Longitude, Conversion

Orient includes UTM to latitude, longitude and latitude, longitude to UTM conversions (Snyder, 1987; 
Dutch, 2015). Conversion among 14 datums, including WGS 1984 an, NAD 1983, is available. The 
Data UTM Conversion dialog (Figure 10.1) can be accessed when there are either easting, northing 
coordinates, or latitude, longitude coordinates. Select the conversion, and the desired datum. The 
hemisphere can be specified using the UTM grid zone, or by hemisphere.

11.3 Tutorial 11 – UTM Conversion

Open the file World Earthquakes 1980-1990 Map from the included Example Data folder (any of the 
provided file formats, csv, tsv, ods, or xlsx, is fine). Note that the file World Earthquakes 1980-1990 

Sphere is formatted to plot the data on a spherical projection, and is not the one for this tutorial. This 
data is a set of 14,229 earthquake epicenters between 1980 and 1990 with magnitudes greater than 4.5 
(data from NOAA).

Next, open the UTM Conversion dialog (Figure 11.1), select Latitude, Longitude to UTM, WGS 1984, 
and UTM latitude zone. Press OK, and the conversion is done. Finally, select View Data Columns and 
check Zone, Easting, and Northing if not already checked. UTM grid zones and coordinates should all 
be displayed.

Tutorial 12 covers web map integration, but you may wish to select one of the earthquake data rows, 
and select Data Show Location Google Maps Satellite. As this is a global data set, you may need to 
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Figure 11.1 UTM, latitude, longitude 
conversion dialog.



zoom out before determining where you are. Data point ID 49 is an interesting example of a non-plate 
boundary seismic event.

11.4 Google and Web Maps

A number of internet web sites offer access to maps, including street maps, topographic maps, and 
terrain maps, by entering search terms or geographic coordinates. Google Maps is probably the most 
well known of these. Orient has commands to open many of these sites, including Google Maps, 
ACME Mapper (which has many topographic maps), Bing Maps, HERE Maps, OpenStreetMaps, and 
others in your default browser. If a data file contains latitude and longitude coordinates, these can be 
opened directly from Orient. If the data contains UTM coordinates, they must first be converted to 
latitude, longitude as covered in Section 11.1. To see the location displayed in your default browser, 
select a data row containing latitude, longitude coordinates, and choose a website from the Data Show 

Location menu.

11.5 Google Earth

The program Google Earth is an invaluable tool in numerous areas, and has become a widely used tool 
in geologic mapping. Google provides an interface using KLM (Keyhole Markup Language) files that 
can contain geographic coordinates, viewing instructions, and many other details. Orient uses this 
interface to display outcrop locations, and symbols for directional data measurements. Symbols are 
selected from the Preference dialog Orientation Map Settings Symbols pane where various symbols 
can be selected, as well as color, size, and line width. The symbol size is set in meters in the KML 

Length edit box, and the width in the KML Width edit box. To save the file, use the File Export to 

Google Earth KML command. Double click the resulting file to open in Google Earth.

11.6 Tutorial 12 – Web and Google Earth

This tutorial covers internet web maps, such as Google Maps, as well as Google Earth integration. 
Open the file Sky Top from the included Example Data folder (any of the provided file formats is fine, 
csv, tsv, ods, or xlsx). This is a demonstration file with simulated geologic data for use in this tutorial. 
You may wish to use the View Data Columns command to close some of the unused columns. 

The file contains the latitude, longitude coordinates of one marker location, and eight simulated data 
points of four different types of geologic data, bedding, cleavage, joints, and slickenside lineations. For 
web map access, select one of the locations and choose a websites from the Data Show Location menu. 
The selected web map will display the location of the data point, you can then zoom in, or change 
display options as needed.

In order to display directional data symbols, as well as location, Orient writes KML files for Google 
Earth, so directional symbols and complete data sets can be viewed. Open the Preferences dialog by 
clicking on its icon, select the Orientation Map Settings option, and the Symbols pane. Select the data 
types from the pulldown menu, and check just one symbol for each data type. For J, check Strike, 
select a strike line with two ticks, and set Stroke Color to light green. For L, check Line, select an arrow
symbol, and set Stroke Color to magenta. For S0 check Strike, select a strike line symbol, and set 
Stroke Color to red. For S1, check Strike, select a strike line with a tooth, and set Stroke Color to red. 
Press OK when done.
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Save the file as Sky Top.klm using the File Export to Google Earth KML command. Double click on it to
open in Google Earth. The location (that I can see from the window in my university office) should 
come into view with the data symbols (Figure 11.2). For a quicker demonstration, there is a copy of the
resulting file in the Example Data folder. 

11.7 Orientation Fields and Domain Analysis

Spherical projections aid in the analysis of directional data, but they do not show their spacial 
distribution. Therefore Orient provides tools for analyzing the spacial variation of directional data, 
including orientation fields and structural domain analysis. Orientation fields are a way to look for 
regional patterns in data by defining eigenfoliations and eigenlineations on a grid over the area 
(Vollmer, 1990). One method is to define discrete subdomains that include all data within them, for 
example a one kilometer square area. A second method is to apply a weighting function to produce 
area-smoothed orientation values. The fields are defined by calculating an orientation matrix at grid 
locations, and using its eigenvectors and eigenvalues to characterize the fabric. 
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Figure 11.2 Example data from the file Sky Top viewed in Google Earth. Example data types are S0 (bedding, 
red), S1 (cleavage, blue), J (joints, green), and a lineation (L, magenta). 



For example, a common problem in mapping areas of complex geologic structure is to identify 
cylindrical domains within the map area (Ramsay, 1967). Figure 11.3 is an equal-area lower 
hemisphere projection of poles to foliations from the Doverfjell mountains, Norway, and Figure 7.4 is a
modified Kamb contour plot of the data. Their spacial distribution is shown in Figure 7.5, plotted using 
the Orientation Map command.
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Figure 11.3 Lower hemisphere equal-area 
projection of poles to 625 foliation planes 
from the Doverfjell Mountains, Norway 
(data from Vollmer, 1985).

Figure 11.4 Modified Kamb contour plot of 
the data shown in Figure 7.3 with contours at
20% density.

Figure 11.5 Orientation map of  foliation 
strikes of the data shown in Figure 7.3.

Figure 11.6 Subdomain orientation field 
of eigenfoliation strikes generated from 
the data shown in Figure 7.3. The strike 
tick marks represent the horizontal 
projection of the dip line.



The geometry of the structure defined by the foliations is not obvious. Figure 11.6 is a subdomain 
orientation field defined on a one kilometer grid. Note that the number of data points within each 
subdomain varies, and that each has a discrete boundary. Figure 11.7 is a weighted orientation field 
where each grid node is generated as a weighted sum of all other data points. This map shows the 
horizontal projection of the dip lines, with steeper dips displayed as shorter lines. 

Structural domain analysis (Vollmer, 1990) is done by attempting to maximize a quantity, or index, 
related to the given problem. Orient provides several indexes that may be maximized, including point, 
girdle, and cylindricity indexes. To locate areas of cylindrical folding the cylindricity index is 
maximized:

C = (ε1 + ε2 – 2ε3) / n

Where ε is the orientation matrix eigenvalue for n data points, and ε1 ≥ ε2 ≥ 2ε3.

For a set of domains the sum of the products of the domain indexes (C1, C2, C3, ...) and the number of 
data points within each domain (n1, n2, n3, ...):

Z = C1n1 + C2n2 + C3n3 + ...

is maximized. Because:

n = n1 + n2 + n3 + ...
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Figure 11.7 Weighted orientation field of 
eigenfoliation dip lines generated from the 
data shown in Figure 7.3. The arrows 
represent the horizontal projections of the 
dip line. 



the maximum possible value for Z is equal to n. The normalized sum is:

C' = Z/n

The settings for the Orientation Map command are in the Preferences dialog Orientation Map panels. 
For each data point, or field value, it is possible to plot a symbol in four directions, Line, Dip Line, 

Strike, and Strike 180 (Figure 11.8). 

Line is the direction of a line, or of the plane normal (θ). Dip Line is the opposing direction (θ + 180°), 
and used to display a plane's dip direction. Strike is the plane strike (θ + 90°), and Strike 180 is the 
opposing direction (θ – 90°). Only Line and Dip line can be projected. To display a projected strike 
symbol, select Dip Line and the strike symbol shaped like a sideways T (Figures 11.6 and 11.8). The 
Length Scale scales the length of the symbol. The KLM settings are for the display of data in Google 
Earth (Section 11.3).

To conduct a domain search, define the extents of the map area in the Extents panel, select the 
Subdomain Method in the Field panel, along with the number of subdomains. Then use the Domain 

Search command, which displays the dialog shown in Figure 11.9. This is used to maximize the 
orientation index using an automated search process. The Value is the current value of the index, and N 
is the number of points used to calculate it. Domains are numbered from 1 to 9, zero represents an 
unassigned domain. Clear resets all subdomains to zero. Initialize sets all domains to the search domain.
Search will attempt to grow the search domain. The search process iteratively checks to see if 
subtracting a subdomain from one domain and adding it to the search domain will increase the index. It
can only do so if both domains remain connected.

The user can manually edit domains, moving the mouse over the map will display subdomain 
information in the status bar, and clicking on a subdomain will add it to the search domain if possible. 
The constraint that the domains remain connected can cause edge effects, and vacant subdomains may 
also effect connectivity. The general procedure is to do a search on a desired number of domains, then 
manually edit them, and search again to see if a better solution is found. 
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Figure 11.8 Orient Preference dialog showing the 
Orientation Map Symbols pane. The options shown 
are to project strike lines as in Figure 10.6.

Figure 11.9 The 
Domain Search 
dialog box.



Once the search is completed, pressing OK will assign domains to each of the data points. The domains 
are added as attributes of the data, use the View Data Columns to view the Domain column. Extended 
data types are formed by appending domain extensions, D1 to D9, to the data type so each domain can 
be plotted independently, for example on a spherical projection.  To update the results during a search, 
click on the Apply button. This will apply the domains to the data and will update other graphs that are 
open. If a spherical projection of the data is open it is possible to color code the data by domain to get a
visualization of the distribution.

10.8 Tutorial 13 – Domain Analysis

Open the file Vollmer 1985 included Example Data folder (any of the provided file formats). This is the
data displayed in Figures 11.3 to 11.7, 625 foliation planes from the Doverfjell mountains, Norway. 
While folds are clearly present, the spherical projections (Figure 11.3 and 11.4) do not display a girdle 
pattern that would indicate cylindrical folding (there are spectacular sheath folds in the Doverfjell and 
adjacent Trollheimen ranges). The map of foliations (Figure 11.5) shows some areas of consistent 
orientation, but the location of cylindrical domains is not obvious.

Click on the Orientation Map icon to display a map of the foliation data, then in the Orientation Map 
window, click on the Preferences icon. In the Orientation Map Extents pane, uncheck Auto Scale, and 
enter the 890 for the minimum X (Easting) coordinate, 150, for the minimum Y (Northing) coordinate, 
1010 for the maximum X coordinate, and 300 for the maximum Y coordinate. To view the data, 
uncheck all symbols in the Maxima pane, and check only Strike in the Symbols pane. The result should 
appear as in Figure 11.5.

To set up the domain search, uncheck Strike in the Symbols pane, and check Strike in the Maxima pane.
In the Field pane the Method should be Subdomain, and Directed should be unchecked. Enter 12 and 
15 for the number of X and Y subdomains respectively. The coordinates are UTM based in meters, so 
this gives one square kilometer subdomains. The resulting map should be as in similar to Figure 11.6, 
except that the strikes are not projected. Press OK when done.

To begin the domain search, select the Graph Domain Search command from the menu (Figure 11.9). 
Press Initialize to set all subdomains to 1, then press Search to grow domain 2. Change the search 
domain to 3, and press Search again. The result is should in Figure 11.10, which has a cylindricity 
index, c = 0.738. There are some edge effects, particularly where domain 1 wraps around the other two.
Move the mouse over the map to see information about each subdomain. Clicking on one will change it
to the current search domain, if all domains remain connected.

Edit the domains by selecting a search domain and clicking on the map. When done, go back to the 
dialog and search on each domain again. If the domains are stable, they will not change. Figure 11.11 
shows a stable solution with C = 0.851, an improvement over the previous value. Press OK when done.
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The map will now be cluttered with symbols, as the three new domains are plotted in addition to the 
field. Before cleaning up the map, open a spherical projection by clicking on the Spherical Projection 
icon in the data spreadsheet window, and then the Preferences dialog. In the Spherical Projection Net 
pane, uncheck Axes and Net, and in the Labels pane set Increment to -90, Offset to 14 and Size to 12, 
as in previous tutorials.

In the Symbols pane, uncheck Symbol the for data type S. Then for data types S.D1, S.D2, and S.D3, 
the new data types, set the Symbol Fill Color to red, green, and blue respectively. In the Maxima pane, 
select only the Minimum Eigenvector for S.D1, S.D2, and S.D3, and set the fill and stroke colors the 
same. The result should be as in Figure 11.12. Note that the three domains show well defined girdles. 
Turning off the data symbols give Figure 11.13, which suggests refolding of earlier folds about a 
northwest plunging axis.

Next, open a triangular orientation (Point Girdle Random) plot using the PGR Plot icon in the data 
spreadsheet window. In the Preferences dialog PGR Plot Symbols pane set the Symbol Fill Color for S 
to white, and then for S.D1, S.D2, and S.D3, to red, green, and blue respectively, and increase the 
symbol sizes to 16. The resulting triangular plot (Figure 7.14) shows the relative changes in cylindricity
from the whole area to the three domains. Note that domain 2 (green) has the strongest point 
distribution, and domain 3 (blue) has the strongest girdle distribution. 
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Figure 11.10 Initial automatic domain 
search formed by grouping the 
subdomains of Figure 7.6 into three 
domains maximizing cylindricity. This 
configuration has a cylindricity index, 
C' = 0.738.

Figure 11.11 Final domain configuration
after iterative manual editing and 
automatic searching to find a stable 
configuration. This configuration has a 
cylindricity index, C' = 0.851.



 

To clean up the map, turn off the display of the maxima in the Orientation Map Maxima pane, turn off 
display of data type S symbols, and set Strike on with Stroke Color for S.D1, S.D2, and S.D3, to red, 
green, and blue respectively, giving the map in Figure 11.15.
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Figure 11.13 Synoptic plot of best fit girdles 
and axes of data shown in Figure 7.12.

Figure 11.15 Data from Figure 7.5 color-
coded by domain.

Figure 11.12 Lower hemisphere equal-area 
projection of data from Figure 7.3, with 
foliation poles color-coded by domain, and the 
great circle normal to the minimum 
eigenvector drawn for each domain.

Figure 11.14 Triangular orientation plot of the 
three domains compared to the total data set 
(white).



As a final step, prepare lower hemisphere equal-area modified Kamb contour plots (Section 4.9) of the 
three domains (Figures 11.16, 11.17, and 11.18).
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Figure 11.18 Projection as in Figure 11.16 
for domain 3 (blue domain in Figures 11.10
to 11.15) .

Figure 11.16 Lower hemisphere equal-
area midified Kamb contour plot of poles
to foliation for domain 1 (red domain in 
Figures 11.10 to 11.15) contoured at 20%
.

Figure 11.17 Projection as in Figure 11.16
for domain 2 (green domain in Figures 
11.10 to 11.15)
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History
3.5.3.6 (2016-11-27)
• Now can undo Calculate Lines command. 
• Selection of data spreadsheet cell (0, 0) now toggles Select All/Select None.
• Rotate Data command now has Directed/Undirected option.
• Data planes rotated to a dip of zero (less than 1E-9 radians), so the Strike becomes undefined, now retain their 

previous Strike instead of an arbitrary value. 
• A great circle that represents a plane with a dip of zero (less than 1E-9 radians) plots as a circle instead of an 

arc. This occurs on either hemisphere. If it is obscured by the net frame, increase the stroke width, or decrease 
the opacity of the Frame (e.g., to 50%).

• A ray that represents an undirected line with a plunge of zero (less than 1E-9 radians) plots as a diameter 
instead of a radius. This occurs on either hemisphere. 

• A symbol that represents an undirected line with a plunge of zero (less than 1E-9 radians) plots as two 
diametrically opposed symbols. This occurs on either hemisphere. 

• Added Mirror option to turn on/off mirroring of horizontal data symbols.
• Fixed Undo command in Log Window.
• Fixed various cosmetic bugs, Gradient Dialog display, Linux button heights, Windows About dialog text 

display, etc.  
• Added display of intermediate eigenvector in status bar when selecting two or more data points, useful, for 

example, in determining the obtuse angle bisectors of fault pairs.
• Added display of intermediate eigenvector in spherical projection when selecting two or more data points, 

useful, for example, in determining the obtuse angle bisectors of fault pairs.
• Changed data cursor symbol to circle.
• Added Cursor Symbols dialog.
• Fixed bugs to correctly locating data points in status bar text and Find command in rotated projections.

3.5.2.12 (2016-11-13)
• Fixed some file opening and saving issues. 
• Fixed some row selection bugs.
• Added version update checking.
• Fixed display bugs in Opacity and Gradient dialogs.

3.5.1.1 (2016-11-02)
• Fixed row selection bug.
• Fixed data line/plane data display bug.
 
3.5.0.28 (2016-10-31)
• Changed messaging procedures from PostMessage to Dispatch message.
• Changed Graph menu item to Plot.
•  Fixed display bug, the data window was not reliably updating spreadsheet display. 
• Added ability to set angle precision for display and file saving.
• Added Edit metadata command to edit file metadata, initial lines in file beginning with “//”.
• Fixed Calculate Line from Rake.
• Removed Calculate Line from Plunge, as nonunique. 
• Column display is now stored by list.
• Added Link data column to link together data items.
• Fixed UTM to latitude, longitude conversion, changed units from radians to degrees.
• Fixed editing of integer values in spreadsheet, they now delete when expected.
• Added Calculate Line from Acute and Obtuse angle with linked plane.
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• Fixed rare exception bug in Kent confidence cones.
• Reduced Data Statistics log output. Data types tagged as directed output: vector means, Fisher and Kent 

confidence. Data types tagged as undirected output: eigenvectors, Bingham and Watson confidence.
• Enabled Cut and Paste commands in spreadsheet.
• Enabled Undo for Cut and Paste and other commands.
• Enabled Save in addition to Save As command.
• Fixed status bar display of coordinates for non-local coordinate spherical projections and inverted X and Y.
• Added interactive and draggable spherical projection rotation using mouse.
• Eigenvectors now calculated using faster singular value decomposition instead of the Jacobi method.
• Added azimuthal equidistant projection.

3.4.2.3 (2016-06-11)
• Now allows a minimum spherical projection contour level of 0.
• Added automatic range setting for spherical projection contour grid, now the gradient automatically scales to 

full grid range by default.
• Added rescaling of spherical projection contour grid to expected uniform density to contour in multiples of 

uniform density.
• Added gradient scale bar option to spherical projection.
• Added WBGYR gradient preset.
• Added an option to place spherical net above the gradient or beachball bitmaps.
• Fixed rotation of spherical projection tick marks.

3.4.1.3 (2016-03-25)
• Fixed orientation map subdomain maxima symbol drawing bug.
• Fixed orientation map subdomain maxima symbol count bug.
• Centered orientation map on page.
• Changed orientation map status display from one to two decimal places.
• Moved orientation map maxima symbols above data symbols.
• Fixed reading and display of explicit NaN values and, therefore, display of polylines (such as the Modern 

Continental Outlines example data).  
• Fixed domain search bug failure to assign domains when multiple files were open.
• Added Apply button to Domain Search dialog.
• The visibility of symbols on the orientation map is no longer linked to their visibility on the spherical 

projection.
• Domain search subdomains are now saved and optionally displayed after Domain Search dialog is closed.
• Added an option in the Preferences dialog Orientation Map pane to show or hide the subdomains when 

Domain Search dialog is closed.

3.4.0.16 (2016-03-20)
• Bound Windows and Linux resources into executable.
• Optimized with FPC 3.0.0 and LCL 1.6.0.
• Improved memory management by freeing unused forms.
• Added View Image Window command, moved location of File Open Image command.
• Replaced Timers with IdleTimers for better performance.
• Settings for Rotate Data, Rotate Projection, and UTM Conversion are now stored between sessions.
• Consolidated raster and vector image saving under Export Image As command.
• Improvements to digitize commands.
• Added Kent distribution confidence cones.
• Added Kent statistics to Log output.
• Added Bingham statistics to Log output.
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• Data input behavior now more spreadsheet compatible. Pressing Enter to accept input moves down, additional 
rows are always available for input, fixed bug causing a scroll up when on last data line.

3.3.3.11 (2016-02-03)
• Fixed Watson confidence cone weighting error, was dividing by count instead of weighted count.
• Added process cancelation code for lengthy operations in bootstrap routines.
• Added progress display status for lengthy operations in bootstrap routines.
• The preferences dialog now displays only the data types available in the current file, instead of all files.
• The spherical projection settings are now saved by file name, instead of globally.
• Only graphs of the current data are now redrawn, instead of all graphs.
• When selecting a plot window the associated file in the spreadsheet is now displayed.

3.3.2.9 (2016-01-24)
• Fixed Page Size dialog display failure.
• Fixed Replicates symbol picker display.
• Fixed several User Manual images in Chapter 6.
• Added Watson confidence cone data to Log.
• Watson confidence cones now rotate on projection rotation.
• Bingham confidence cones now rotate on projection rotation.
• Fixed preferences initialization bug.
• Preferences dialog now reopens on last panel.
• Preferences dialog now reopens with last data type selected.
• Weighting now works with Fisher confidence cones.
• Weighting now works with Watson confidence cones.
• Added translucent display of data polygons on hidden hemisphere.
• Fixed divide by zero bug.
• Fixed additional Windows and Linux control display issues. 
• No longer asks twice on quitting with modified file.
• Added translucent display of tangent lines on hidden hemisphere.
• Status bar now indicates if a file is modified.
• Can now display kinematic beachball and tangent lines at same time.

3.3.1.13 (2016-01-17)
• Fixed some dialog control display issues in Linux.
• Added translucent display of contour lines on hidden hemisphere.
• Added translucent display of confidence ellipses on hidden hemisphere.
• Fixed XML creator to correctly translate [&”<>] characters in file paths. Project files are validated XML.
• Project files now save open file paths.
• Added commands to save and open project files.
• Fixed bug causing crash when closing a tabbed window.
• Fixed bug that was naming “untitled” “untitled 1”.
• Fixed some tab orders and control spacing.
• Modified status bar display to include calculated angle for two selected data points. Clicking on the status bar 

toggles between line and plane units.

3.3.0.8 (2016-01-11)
• Corrected the name of the Calculate Line Orthorectify option to Orthonormalize.
• Changed Orthonormalize algorithm from QR decomposition to polar decomposition, to give the closest 

orthogonal frame. The difference should be minimal.
• Fixed sorting in Weight, Error, Rake, Sense, and Alpha columns.
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• Tweaked the tangent-normal wrapping algorithm used in bootstrap covariance calculation. The difference 
should be minimal. 

• Plot windows now save their placement on the screen based on name.
• Added Cluster Partitioning, see User Manual Chapter 10.
• Added hidden small circle display.

3.2.1.4 (2016-01-02)
• Fixed numerous control display issues in Linux.
• Cleaned up control alignments in Preferences dialog.
• Fixed Beachball to rotate with projection.
• Modified small circle bootstrapping work with psi close to 90.
• Added small circle bootstrap estimation of confidence in psi.
• Added drawing of small circle bootstrap confidence rings about psi.
• Added Fibonacci Sphere command.
• Added opacity options to plot symbols, rays, and great circles on hidden hemisphere.
• Numerous updates to the user manual.

3.2.0.7 (2015-12-29)
• Added best-fit small circles.
• Modified labels in Columns Dialog to show current data angles, e.g., Strike.
• Fixed control spacing in Linux Calculate Lines dialog.
• Rotate Projection dialog now includes Vector Mean and Small Circle Pole.
• Added circular confidence cones for bootstrap means.
• Added Alpha field and plotting of small circle data.
• Added option to plot hidden directed data, on opposing hemisphere, with an unfilled symbol.
• Added Help Orient Home Page command.
• Fixed NaN entry and polyline markers, that got broken in 3.1.0.
• Cleaned up Log file, added Fisher statistics.

3.1.0.27 (2015-12-14)
• Added Sense column for kinematic analysis to allow undirected (downward) lineation entry, previously it was 

necessary to input directed (upward or downward) fault lineations. 
• Fixed weighting error in orientation field.
• Fixed orientation map page size setting.
• Added Weight column for data point weighting, 1 is the default value, 2 counts a data point twice, etc..
• Decreased non-splined points to 91 in spherical net small circles. Use Restore defaults to implement. 
• Fixed duplicate drawing of spherical net small circles.
• Spherical net great circles in SVG are now computed as cubic Bezier paths.
• Added Windows system tray icon
• Added encapsulated PostScript (EPS) vector graphics export.
• Added AutoCAD drawing exchange format (DXF) vector graphics export.
• Added hexagon and pentagon symbols.
• Fixed arrowheads in kinematic analysis plots.
• Clarified directional versus orientation data definitions.
• Added Rake column for the rake of a line in the containing plane.
• Added Error column giving the angular error between a line and the containing plane. Read only.
• Fixed data entry to not delete invalid entry over existing value.
• Fixed several data entry display issues.
• Added Calculate Line command to calculate line in plane angles from projection, trend, plunge or rake.
• Rotate Data command now rotates only selected items.
• Modified status bar to display maximum and minimum eigenvectors for two or more data points.
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• Fixed command clicking on plots to update multiple selections in the spreadsheet.
• Removed Yahoo! Maps linking, they shut down this service. 
• Fixed bug setting X and Y fields when locating points.
• Added orthorectification option to Calculate Line command.
• Added bootstrapping analysis with elliptical confidence cones and polygon regions (hulls).
• Fixed Log Window Copy command. 

3.0.2.1 (2015-09-28)
• Fixed Preferences Dialog list spacing.
• Optimized contour line segment joining for vector export. 
• Optimized data grid scrolling.
• Fixed Linux About display.
• Optimized messaging.
• Fixed crash when non-Roman Unicode characters are in user name.  A workaround is to run Orient from a 

thumb drive with only Roman characters in file and folder names.
• Work on User Manual.

3.0.1.0 (2015-05-30)
• Fixed bug importing dip direction.

3.0.0.77 (2015-05-01)
• First release of Orient 3. Complete rewrite with numerous new features. Compiled, tested, and debugged on 

Macintosh, Windows, and Linux.

2.1.2 (2012-10-31)
• Last release of Orient 2.

2.0.0.7 (2006-07-23)
• First release of Orient 2. Complete rewrite with Macintosh, Windows, and Linux versions.

1.6.1 (1995-02-28)
• Last release of Orient 1.

1.0.0 (1986)
• First release of Orient 1, Microsoft DOS. Introduced modified Kamb contouring, triangular fabric plots, and 

automated domain analysis (see Vollmer, 1985, 1988, 1990, 1993, 1995). Available by download (modem) 
from COGSnet, sponsored by the Computer Oriented Geological Society, Denver, CO.
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